
Algorithmic Finance 6 (2017) 23–33
DOI:10.3233/AF-170182
IOS Press

23

Study of the periodicity in Euro-US Dollar
exchange rates using local alignment
and random matrices
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Abstract. The purpose of this study was to detect latent periodicity in the presence of deletions or insertions in the analyzed
data, when the points of deletions or insertions are unknown. A mathematical method was developed to search for periodicity
in the numerical series, using dynamic programming and random matrices. The developed method was applied to search for
periodicity in the Euro/Dollar (Eu/$) exchange rate. The presence of periodicity within the period length equal to 24 hours
and 25 hours, in the analyzed financial series, was shown. Periodicity can be detected only with insertions and deletions. The
results of this study show that periodicity phase shifts, depend on the observation time. A period of 24 hours is a common
phenomenon for foreign exchange rates, indices and stocks of different companies. We show it for the Bank of America
and Microsoft stocks, S&P500 and NASDAG indexes and for the gold and silver prices as examples. The reasons for the
existence of the periodicity in the financial ranks are discussed. The results can find application in computer systems, for the
purpose of forecasting exchange rates.
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Identification of the cyclic patterns in numeric
time series and symbolical sequences may shed
light on the processes occurring in systems of a
different nature and give information about the struc-
ture of different time series. Currently, there are
many mathematical methods for studying symbolic
sequence periodicity. This is due to the neces-
sity of studying DNA sequences and amino acid
sequences of proteins (Miller, 2006; Mount, 2004).
To identify periodicities in the time series and sym-
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bolical sequences, the methods mainly used are based
on the Fourier transform, wavelet transform and
dynamic programming, as well as some other method
(Benson, 1999; Chechetkin and Turygin AYu, 1995;
Coward and Drabløs, 1998; Dodin et al., 2000; Fadiel
et al., 2006; Granger and M, 1967; Hamilton, 1994;
Jackson et al., 2000; Makeev and Tumanyan, 1996;
Marple, 1987; Oppenheim et al., 1999; Rackovsky,
1998; Stankovic et al., 2005; Stoica P and Moses
R, 2005; Struzik, 2001). Previously, we proposed
the method of informational decomposition, which
allows the detection of periodicity in both symbolic
and numeric sequences; however, the detection was
severely impeded by the above approaches (Korotkov
et al., 2003). These difficulties emanate from the fact
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that methods based on Fourier and Wavelet transform,
decompose the statistical significance of long periods
(larger than the size of the analyzed sequence alpha-
bet) for smaller periods with a multiple of the length
(Korotkov et al., 2003). Also, these methods are very
sensitive to the insertion and deletion of symbols.
This leads to the fact that spectral methods cannot
detect periodicity at a statistically significant level,
even in the presence of a few deletions or insertions.
Dynamic programming, which allows the detection
of deletions and insertions in the periods, cannot
detect relatively “fuzzy” periodicity. This is due to
the fact that this method is based on finding the simi-
larity between pairs of periods in the studied sequence
(Benson, 1999). However, if a statistically significant
similarity is absent between two separate periods,
dynamic programming will fail to detect periodic-
ity in the analyzed sequence. The lack of similarity
between two separate periods can be observed for
latent periodicity, where the periodicity occurs on the
background of random noise (Korotkov et al., 2003).
To find such periodicity, the method of informational
decomposition was used (Korotkov et al., 2003). This
method enabled the discovery of latent periodicity in
the DNA sequences of many genes (Chaley et al.,
1999; Korotkov et al., 1997) and revealed the latency
of amino acid specific for the protein families
(Korotkov et al., 1999; Turutina et al., 2006). These
results suggest that latent periodicity with insertions
and deletions can be detected in sequences of a dif-
ferent nature and in numerical sequences also.

Today, it is known that people, animals and plants
have biological rhythms. The manifestation of these
rhythms can be observed at all levels of biologi-
cal organization. The interaction can be observed
between the rhythms that affect the internal state
of the person and on various social processes. A.
Chizhevsky (1976) first drew attention to the influ-
ence of natural factors on social processes The
biological rhythms can also influence currency rates.
If the periods in the exchange rates exist, then the
various events in public life can affect them. Such
events can lead to changes in the data and could be
identified as a phase shift of the period. The phase
shifts in the sequence could have resulted from dele-
tion or insertion of values with respect to the existing
period. Therefore, in order to detect this periodicity,
it was necessary to develop a mathematical method
for detecting the periodicity of the time series, tak-
ing into account the unknown location and unknown
number of insertions or deletions, in the presence of
large noise. It cannot be done with the help of all

known mathematical methods. Previous studies have
searched for insertions or deletions (Rastogi et al.,
2006), but failed to find a periodicity with large noise
(Suvorova et al., 2014). It is right mainly for dynamic
programming. Either of these methods works well in
the presence of large noise, but fails to find periodicity
in the presence of even small amounts of insertions
and deletions (Korotkov et al., 2003).

This paper contributed to filling the gap in
mathematical methods for periodicity search. A
mathematical method was developed to find period-
icity in the symbolical sequences, in the presence
of insertions and deletions and the big noise. The
method was developed using the random matrices
of periodicity and the method of dynamic program-
ming. The developed method was applied to search
for periodicity in the exchange rate of the Euro to
the US Dollar. To search for periodicity, the numeri-
cal sequence was converted to a symbolical sequence.
The calculations show that there is a periodicity equal
to 24 and 25 h in the Euro-Dollar exchange rate. This
periodicity of the exchange rate contains a lot of
insertions and deletions and could not be detected
by previously developed mathematical methods. The
periodicity with 24 hour period is observed in a stock,
financial indexes and prices. We show here the peri-
odicity the Bank of America and Microsoft stock,
S&P500 and NASDAG indexes and the gold and
silver prices as examples.

1. Methods and algorithms

To search the periodicity with insertions and dele-
tions, the algorithm shown in Fig. 1 was used. As
can be seen from the algorithm, firstly, a set of ran-
dom matrices (Fig. 1, paragraph 2) with size 20xn
was generated, where n is the length of the period,
and 20 is the alphabet size of the studied sequence.
Then, a local alignment of the studied sequence was
built relative to each of the generated random matri-
ces (Fig. 1, paragraph 3). Dynamic programming was
used to build the local alignment and in determining
the similarity function F. Then, the matrices were
transformed because the distribution of the similar-
ity function F maximum for each of the matrices for
the set of all random sequences (set Q, paragraph
2.2) should be similar. The transformed matrix hav-
ing the highest value of the similarity function F, with
the studied sequence S, was chosen. Then, this matrix
was optimized to achieve the highest value of the sim-
ilarity function F (maxF) with the studied sequence S
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(Fig. 1, paragraph 4) and the transformed matrix was
called T. Then, the value of maxF for each random
sequence from the set Q and for matrix T was cal-
culated. It allowed the mean value and variance for
maxF to be determined (Fig. 1, paragraphs 5.1–5.4).
This algorithm was applied for periods of different
lengths and for each length of the period n, the corre-
sponding value of Z was calculated (formula 7). As
a result of the algorithm, the dependence of Z on n
was obtained and denoted as Z(n). (Fig. 1, paragraphs
6). It should be noted that in this study, dynamic pro-
gramming was used to find a local alignment. This
means that the boundaries of the regions with maxF,
may differ from the beginning and end of the studied
sequence. It means also that the values of Z(n) for dif-
ferent n can be obtained for different fragments of the
studied sequence. The boundaries of the fragments,
obtained for relevant values of Z(n) are shown. Sub-
sequently, each step of the algorithm shown in Fig. 1
was examined in more detail.

1.1. Creation of a character sequence from
a numerical sequence

The candle opening and closing was separated by
an interval of 1 h. Let x1(i) – be the rate at the time
of opening of the candle, and x2(i)- the rate at the
close of the candle. The sequence A, we calculated the
difference s(i) = x2(i)-x1(i), where x1(i) and x2(i) are
separated by hour. The numeric sequence A of length
N was transformed in the symbolic sequence S with
alphabet of 20 letters (Fig. 1, paragraph 1). To convert
the numerical sequence, the minimum and maximum
elements of the sequence A were determined. Then,
this interval was divided into 20 intervals, the num-
ber of elements of the numeric sequence in each
interval was approximately equal to N/20. Each inter-
val received the letter of the Latin alphabet. If a
numeric sequence contained many of the equal val-
ues than the boundaries of the intervals were varied
in such a way that the same numbers were encoded
by the same symbol. We created the sequences S
for Euro/Dollar (Eu/$) exchange rate (sequence S1)

Fig. 1. Scheme of the mathematical algorithm which was used to
calculate the statistical significance of period Z of length n in the
studied sequence.

Bank of America (sequence S2) and Microsoft stock
(sequence S3), S&P500 (sequence S4) and NASDAG
(sequence S5) indexes and the gold (sequence S6) and
silver (sequence S7) prices. The sequence S1 encoding
is shown in Table 1. The sequence S1 was obtained for
data from 01.03.2016 to 20.12.2016. Sequences S6
and S7 were received from 01.03.2016 to 20.12.2016.
The sequences S2, S3, S5, S5 were obtained for data
from 01.03.2016 to 20.12.2016. Method can analyze
the sequence no longer than 5000 symbols and it
determines the time interval for analysis. Numerical
data were taken from the site http://finam.ru, Moscow
time.

We also used the candle separated by an interval
of 0.5 h and 4 h for Euro/Dollar (Eu/$) exchange rate
and we generated the sequences S8 and S9. These
sequences contain 4800 symbols and data of last kin-
dle is 20.12.2016.

Table 1
The coding of sequence A2 to obtain the sequence S1 is shown

K N I M T R S L Y F

–0.00880– –0.00120– –0.00080– –0.00060– –0.00040– –0.00030– –0.00020– 0.00020– –0.00010 0.00000
0.00120 0.00080 0.00060 0.00040 0.00030 0.00020 0.00020 0.00010 0.00000 0.00000
C W P H Q V A D E G
0.00000 0.00010 0.00010 0.00020 0.00020 0.00030 0.00040 0.00060 0.00080 0.00110
0.00010 0.00010 0.00020 0.00020 0.00030 0.00040 0.00060 0.00080 0.00110 0.00100

http://finam.ru
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1.2. Generation of random sequences

A set Q of random sequences was created by ran-
dom shuffling of the sequence S (Fig. 1, Paragraph
5.1) and the set Q containing 200 sequences. To gen-
erate one random symbolical sequence, a random
number sequence of length N was generated by the
random number generator. Then, a random number
sequence was arranged in ascending order, storing the
generated permutations. The produced permutations
were used for mixing the sequence S, and as a result
of this mixing the random symbolic sequence from
the set Q was created.

1.3. Creation of a set of random matrices with
length n

Random matrices with the dimension 20xn were
used, where n is the length of the period (Fig. 1, Para-
graph 2). Each matrix can be viewed as a point in
space 20xn. A set of random matrices W was created
when the distance between them in the space 20xn
should not be less than a certain value. To calculate
the differences between the two matrices m1(i,j) and
m2(i,j), the information measure was used (Kullback,
1997):

Ij(M1, M2) =
20∑
i=1

m1(i, j) ln(m1(i, j))

+
20∑
i=1

m2(i, j) ln(m2(i, j))

−
20∑
i=1

(m1(i, j) + m2(i, j)) ln(m1(i, j) + m2(i, j))

+ (s1(j) + s2(j)) ln(s1(j) + s2(j))

− s1(j) ln(s1(j)) − s2(j) ln(s2(j)) (1)

where sk(j) =
20∑
i=1

mk(i, j). 2Ij has an asymptotic chi-

square distribution with 19-th degrees of freedom
(Kullback, 1997). Then we calculated:

I(M1, M2) =
n∑

j=1

Ij(M1, M2) (2)

Hence, 2I(M1, M2) has an approximately
χ2(df ) and df equal to 19n because I1(M1, M2),
I2(M1, M2),. . . , In−1(M1, M2) are indepen-
dent and In(M1, M2) is completely determined
by I1(M1, M2), I2(M1, M2),. . . , In−1(M1, M2)

(Kullback, 1997). Then we used the approxima-
tion of the chi-square distribution by the normal
distribution:

x(M1, M2) =
√

4I(M1, M2) −
√

2df − 1 (3)

The value x(M1, M2)∼N(0, 1) N(0,1) was
obtained and is an argument of the standard normal
distribution. N(0,1) is very useful as a measure of the
differences between the matrices m1(i,j) and m2(i,j).
The probability p = P(x > x(M1,M2)) shows that the
differences between the matrices m1(i,j) and m2(i,j)
are determined by random factors. If the difference
between the matrices m1(i,j) and m2(i,j) increases,
then N(0,1) becomes larger. The difference between
matrices not less than 1.0 was chosen.

The used algorithm to generate matrices was
next. Each element of the matrix m(i,j), i = 1,. . . ,20,
j = 1,. . . ,n was randomly filled with equal probability
either 0 or 1. Then, the matrix was compared with
all matrices, which were already included in the set
W. If at least one matrix has this difference, less than
L = 1.0, then the generated matrix was not included in
the set W. If the difference was greater than L = 1.0 for
all matrices from the set W, then the matrix is included
in the set W. The 108 of such matrices were created
for each period length n. These matrices were used
to construct the alignments for sequences created in
paragraph 2.1.

1.4. Alignment sequence S relative
to the random matrices

To search for the periodicity in the sequence S
with insertions and deletions, an alignment sequence
S relative to the modified matrices m’ from the W
set was performed; a method of modifying matrices
is described below (Fig. 1, paragraph 3). To build
alignment, the matrix for the similarity function F
was filled, using a modified matrix m’(i,j).

F (i, j) = max

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0

F (i − 1, j − 1) + m′(s(i), k)

F (i, j − 1) − d

F (i − 1, j) − d

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
(4)

where s(i) – element of the sequence S, d – weight
per insertion or deletion of a symbol in the sequence
S. Here, i and j changed from 1 to n; k = j –
n*int((j-0.1)/n). This means that the index j always
corresponds to the column of the matrix k. The matrix
F has dimension N by N, where N is the length of
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the sequence S. Simultaneously, with the filling of
the matrix of the similarity function F, the matrix
of inverse transitions F’ was filled. It has the same
dimension as the matrix F. Each element of the matrix
F’(i,j) contains the number of the element of the
matrix F, for which the maximum is reached in the
formula (4). After filling in the matrices F and F’, the
maximum element maxF in the matrix F and its coor-
dinates (im , jm ) were determined. The alignment of
the sequence S concerning the sequence of indices k
was created with help of the matrix of the inverse tran-
sitions F’, as earlier described (Polyanovsky et al.,
2011). The path in the matrix F from the point (im ,
jm ) to the point (i0, j0) corresponds to the created
alignment. At the point (i0, j0), the function F became
equal to zero for the first time and served as the
beginning of the alignment. The first sequence of
the alignment is the sequence of numbers k, and the
sequence S is the second sequence in the alignment.
Each column k in the alignment, mapped the symbol
of the sequence S, or sign * which indicates that this
column is not mapped to any symbol of the sequence
S. Similarly, each symbol of the sequence S is associ-
ated with a specific column k or sign * which indicates
that this symbol is not mapped to any column k. To
build the alignments created in paragraph 2.1 and 2.2
sequences, the modified matrix m’ from the set W was
used. Firstly, the values A and B for matrix m were
calculated as:

A =
20∑
i=1

n∑
j=1

m(i, j)2 (5)

B =
20∑
i=1

n∑
j=1

m(i, j)p(i) (6)

where p(i) = n(i)/N, n(i) is the number of symbols of
type i in the sequence S, N is the total number of
symbols in the sequence S.

To carry out the alignment, the matrix m’ needs to
satisfy two conditions. The first condition is that the
A values for matrix m’ with the same period length n
would be the same and equal to 200*n. The second
condition is that the distribution functions for maxF
would be most similar for all matrices of length n.
The distribution for each matrix can be built to align
each matrix length n with random sequences from the
set Q and to determine the maxF for each sequence
from set Q. The value of the constant B for each
matrix was selected, which provided maximum iden-
tity for the distribution function maxF, for matrices on

the set Q with the same n value. The two conditions
shown above, allow the replacement of matrix m on
the matrix m’, for which these conditions are satisfied.
Equation (5) is the equation of the surface of the ball
in space 20xn, and Equation (6) is the equation of the
plane. If the matrix m’ satisfies these conditions, then
it lies on a circle formed by intersection of the surface
of the balloon (Equation 5) by the plane (Equation 6).
The matrix m is considered as a point in space 20xn,
from which the nearest point was obtained, which lies
on the circle formed by the intersection of the surface
plane with the ball. The coordinates of this point are
the m’ matrix. It is easy to write a few simple equa-
tions to determine the coordinates of this point (the
values of the matrix m’) on base of the matrix m,
using Equations 5 and 6. Practically, this means that
the constants A, B, and the matrix m can be used to
calculate the p(i) for a sequence S, thus the matrix m’
can be clearly defined (if there is an intersection of
the surface of the plane with the ball plane). Further,
the aim was to find for each matrix length equal n the
constant B, which would ensure a maximum iden-
tity of the distribution function of maxF on the set of
sequences Q.

Simultaneously, with the calculation of the distri-
bution function for maxF on the set of sequences
Q, the average length of a random alignment was
calculated as the difference (im -i0), where im –
is coordinate of the maxF in the sequence S, and
i0 – coordinate, where F = 0.0 (the coordinate of
the beginning of the alignment in the sequence S).
The average length of a random alignment equal to
600 ± 60 symbols was selected. This value provides
the best search of the alignment boundaries relative
to the real boundaries on the model sequences. The
choice of the constant B was carried out by an iterative
procedure. The constant B, which gives l approxi-
mately equal to 600 symbols, obviously lies in the
interval from B1 = 0 and B2 = –15.0. There were no
registered matrices that failed to satisfy this require-
ment, thus, the middle of this range was taken. If l is
more than 600, then B1 equal to –7.5 was taken, and
if l is less than 600, B2 equal to –7.5 was taken and
the determination of the l was repeated. When l was
equal to 600 ± 60, the process of choosing constant
B was stopped.

1.5. Optimization of a random matrix with
the largest value of the similarity function

For all matrices from the set W, was determined
the modified matrix max(m’) which had the highest
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value of the similarity function maxF. For it, the
alignment was calculated and the coordinates of the
alignment were determined (Fig. 1, paragraph 4).
However, despite the fact that a very large num-
ber of matrices was used, the matrix max(m’) may
have the value maxF, which is not the largest for a
sequence S and for length of period n. This means
that the largest value can be achieved for the matrix T,
which lies at some distance from the matrix max(m’)
that is less than the chosen threshold L (paragraph
2.3). Therefore, approximately 107 matrices were
created, having distance from the matrix max(m’) L
less than that specified in paragraph 2.3 (L = 1.0) but
greater than 0.0. This means that the difference L with
max(m’) matrix was in the range (0.0–1.0). These
matrices were also used, as indicated in paragraph 2
and a final matrix T was chosen which had the highest
value maxF. The described algorithm is faster than
the genetic algorithm used for matrix optimization
(Pugacheva V.M. et al., 2016).

1.6. Calculation of Z values for the period
n of the studied sequence

The procedures described in paragraphs 2.4 and 2.5
were used for random sequences from the set Q. This
allowed the mean value maxF for each length to be
determined and the variance D(maxF) for the maxF
after optimization (see paragraph 2.5). This allowed
the measure of periodicity to take the value:

Z(n) = maxF (n) − maxF (n)

D(maxF (n))0.5 (7)

As a result, the dependence Z(n) for symbolic
sequences S (Fig. 1, paragraphs 5-6) was constructed.
As sequence S we used the sequences S1–S9.

1.7. The using of the Fourier transform
and its statistical significance

The results obtained from the study of sequences S1
were compared with the results on a search of period-
icity, using the Fourier transform. Fourier transform
calculates the intensity of the spectral density for a
set of orthogonal periods (Granger & M, 1967). How-
ever, for a comparative study of our method with the
method of Fourier transform, it is desirable to con-
sider not a spectral intensity but the magnitude similar
to the Z(n), defined by formula (5).

To build this spectrum, numeric values of the
analyzed sequence were randomly mixed, without

changing the values of the sequence. After this mix-
ing, a numerical sequence same length as the original
was received, and to this sequence we applied the
Fourier transform. A 1000 sequence shuffle was done
and the resulting intensity for each orthogonal period
had a range of 1000 values. This range allowed the
determination of the mean value and variance of
intensities for different period lengths. As a result,
for each intensity the value of Z was determined by
formula (7) and a Fourier transform spectrum iden-
tical to the spectra obtained in paragraph 2.6, was
obtained.

2. Results and discussion

Figure 2 shows the application of the devel-
oped approach to the random sequence and
the sequence S10 obtained from the sequence
S10’ = (EFKLWNMSTWRYLQKLWQSMETMQ)16.
In random cases 75% substitutions were performed
in the sequence S10’; and after that our developed
approach was applied. The results of the random
sequences analysis demonstrate that Z(n) fluctuated
around 4.0. It should be noted that the insignificant
trend toward increasing the Z-values in the random
sequence corresponds to the periodicity length of
more than 70. Judging from these results, it could
be concluded that periodicities with Z-values >7.0
were found to be interesting. The results of the S3
sequence study show that the developed approach

Fig. 2. Black circles show the Z(n) for the random sequence. White
circles show the Z(n) for the artificial sequence with a period of
24 symbols with total length of 384 symbols and 75% random
substitutions. It is evident that despite the large number of random
substitutions, the developed mathematical method could detect the
periodicity with n = 24.
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Fig. 3. The spectrum of Z(n) obtained for the sequence S1 (para-
graph 2.6).

could be applied to identify the fuzzy frequency
and determine the optimal weighting matrix for the
detection of periodicities with the length equal to 24
symbols. It is possible to register the periodicities
equal to 48 and 72 symbols. However, significant
Z-values also received periodicities with the lengths
close to 48 and 72 symbols, because there appears
a possibility of insertions or deletions. It is always
possible to perform insertions or deletions to align
the sequence S3 against the matrices and to receive
periodicities close to 48–72 symbols with a high
Z-value. However, this leads to a slight drop in
the Z-values, which is related to the penalties for
insertions or deletions. So, the graph around 48 and
72 symbols looks like a gently sloping mountain.

Next, the developed approach was applied to the
periodicity search within the symbol sequence S1
(paragraph 2.6). The Z(n) spectrum obtained for the
sequence S1 is shown in Fig. 3. For the sequence
S1, periodicities were registered in 24 and 25 h. Both
periodicities were analyzed based upon almost the
same data. The 24 h periodicity was observed for the
29 to 4165 h sequence S1; and the 25 h periodicity
was observed from the 29 to 4224 h sequence S1. The
periodicity equal to 25 h was the mostly statistically
expressed (Z≈14.0), compared to the periodicity hav-
ing the length of 24 h (Z≈10.5). It could be assumed
that building a significant alignment for two period-
icities is associated with the ability to create symbol
insertions or deletions in the sequence S1.

The optimal weighting matrix for the 24 h period-
icity is shown in Table 2. This matrix was obtained
by applying the developed algorithm. The matrix in
Table 2 demonstrates that the matrix elements oscil-
lation amplitude max(m’) is different in different

columns. The matrix shows that every hour is char-
acterized by significant fluctuations in up and down
directions.

Figure 4 shows the results of the Fourier trans-
form application to sequence A1, which created the
sequence S1 basis. This figure demonstrates that the
Z-values for various n-values do not exceed 5.0 and
suggests that the Fourier transform is not capable of
detecting the periodicity in sequence A1. This is due
to the fact that the periodicity discovered using our
method is characterized by insertions and deletions.
Moreover, the insertions and deletions position was
unknown before the sequence analysis.

It is also interesting to consider the phase shifts
of the discovered periodicity. The number of hours
in a day (hours(i), i = 1,. . . ,24) was numbered from
1 to 24, where the first hour of the day corresponds
to one. Figures 5 and 6 show the difference between
the column number k(1), which corresponds to the
first hour of the day; and the number of first hour of
the day hours(1) = 1. In the case of periodicity, the 24
and 25 h pattern of phase shifts is more complex. In
the case of a periodicity equal to 24 h, Fig. 9 shows
that the periodicity phase is relative to the number
of hours of the day and remains the same for 4-5
days. After that, the 3 – 6 h phase shifts occur. In the
case of periodicity equal to 25 h each day, a stable
phase shift occurs for some hours. This means that
the periodicity phase was changing each day with the
25 h periodicity.

It is interesting to observe the presence of periodic-
ity equal to 24 hours in different financial time series.
To answer this question, we primarily employed the
candles separated by the intervals of 0.5 h and 4 h
for the Euro/Dollar (Eu/$) exchange rate. If the 24
hours periodicity is maintained, then it should be
equal to 48 points (48 × 0.5 h = 24 h) and 6 points
(6 × 4 h = 24 h). It is possible to see from Figs. 7 and
8 that the periodicity equal to 24 h is represented by
these candles. Multiplicity periodicities of 24 hours
could also be observed in Fig. 8 (48, 72, 96, 120
hours).

Then we decided to analyze the presence of period-
icities equal to 24 hours in stocks randomly selected
with several leading companies. The analysis was
performed using the stocks of the Microsoft Corp.
and the Bank of America. The results are presented
in Figs. 9 and 10. These companies’ stocks are traded
during the business day. So, in regard to these enti-
ties we registered about 7 candles for 1 hour each
day. Data on trading these stocks within another
time frame is missing. It means that the 24 hours
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Table 2
The table contains the weight matrix for periods equal to 24 h. Position period and the weight for each symbol in each position

of the period are shown

1 2 3 4 5 6 7 8 9 10 11 12

K 1.6 1.8 –0.1 0.7 –2.7 –2.3 –2.7 –1.0 –1.4 –3.1 –2.7 –0.6
N 2.0 1.5 1.9 –0.6 –1.9 –1.0 –2.7 –3.2 –3.2 –1.9 –3.2 –0.6
I 2.2 –1.8 0.3 1.5 1.5 –1.8 –1.0 –0.1 –3.1 –1.8 –0.5 –1.0
M –1.4 –0.5 0.4 1.5 –0.5 1.5 –0.5 –1.8 –0.5 1.2 –0.5 –3.1
T –3.6 1.7 –1.9 1.6 –0.7 –1.1 1.7 –1.9 –0.7 –0.3 –1.9 0.6
R –0.1 –2.3 0.3 1.2 1.5 0.3 1.5 –1.4 –0.1 1.9 –3.1 –1.0
S 0.5 –3.3 –2.8 1.3 1.4 –1.6 –0.7 1.5 –1.2 –1.2 1.5 1.5
L –1.1 –0.6 –3.2 –0.2 –0.2 –1.5 0.6 –0.6 1.3 1.7 1.7 1.8
Y –1.3 –2.2 1.6 –2.6 1.3 1.7 –0.4 1.7 1.6 –1.7 1.6 –1.7
F –2.8 –1.6 –0.7 –2.4 1.0 1.7 –0.3 2.1 1.7 –0.3 1.6 1.4
C –2.3 –0.5 –2.3 –0.5 0.3 –2.3 1.2 1.6 1.8 1.8 0.8 1.7
W –0.7 –1.1 –1.6 –0.7 1.6 1.8 –1.1 –2.4 0.5 1.4 1.3 –2.8
P –1.9 –1.5 –0.2 –1.5 –3.2 0.3 1.5 1.5 1.8 0.7 1.5 1.8
H –1.1 –2.4 –1.5 –1.9 1.6 1.6 1.7 1.7 1.3 1.7 –0.3 –1.5
Q –1.3 –1.7 –0.9 0.0 –2.6 1.3 0.5 1.3 1.3 –2.6 1.4 0.9
V –0.5 –1.0 –1.0 1.4 1.2 0.3 1.8 –1.4 –0.1 0.7 0.7 1.5
A 0.3 –1.4 1.8 –2.3 1.6 –2.3 1.4 –1.0 –2.3 0.3 1.4 0.3
D 1.7 1.2 –1.4 1.4 0.7 –0.5 –1.8 –1.0 –1.0 –1.8 –2.3 –0.1
E –2.3 2.2 2.1 –0.6 –3.2 –1.0 –2.7 –3.2 –1.0 –0.6 –2.3 –1.9
G 1.8 1.9 1.4 1.1 –2.3 –1.0 –2.7 –1.0 –2.7 –2.7 –1.0 –2.7

13 14 15 16 17 18 19 20 21 22 23 24

K –3.6 –1.4 –1.9 –1.4 –2.7 –0.1 0.3 2.1 2.0 1.8 1.8 1.8
N –3.2 –0.6 –2.7 –3.6 0.3 1.5 2.0 –1.0 1.9 0.3 1.9 1.8
I –0.5 –3.1 –2.7 –0.1 –1.8 1.6 0.3 1.6 2.0 –2.3 0.3 0.7
M –0.9 –0.1 –1.4 1.6 –0.9 –0.5 0.4 –0.9 –0.9 –0.5 1.8 1.8
T 0.2 1.9 –1.1 1.6 –1.1 –2.8 1.5 –0.3 –0.3 –0.7 1.8 –1.9
R 0.3 –0.6 1.9 1.4 –2.3 –2.3 1.6 –1.0 0.3 –1.0 –0.6 –2.7
S –1.2 1.8 –0.7 2.1 2.0 –1.6 1.5 –2.4 –2.4 –3.3 –1.6 –2.4
L –1.1 1.8 1.1 1.5 –1.1 –1.5 –2.3 –0.6 1.1 –0.6 –1.9 –1.5
Y 1.4 –0.9 2.0 0.0 –0.9 –1.3 –2.2 0.0 –1.7 0.9 –1.7 –2.6
F 1.4 –1.6 2.0 –2.4 1.0 1.3 –0.7 –2.8 –3.2 –2.8 –2.4 –2.0
C 1.5 0.8 –0.5 –2.3 1.5 1.5 –2.3 –2.3 –0.5 –1.8 –2.7 –1.0
W 1.4 1.9 1.6 0.1 1.7 –1.1 –1.1 –1.1 –2.4 0.5 –2.4 –1.6
P 1.1 –1.9 1.5 –0.2 –1.0 –0.6 0.3 –1.5 –0.6 –0.2 –1.0 –1.9
H 1.5 –0.7 0.6 1.5 –1.9 0.6 –1.9 –1.9 –2.8 –1.1 –1.1 1.0
Q 2.0 –0.9 0.9 0.5 1.4 0.0 –0.9 0.0 –2.2 0.9 –1.7 –1.3
V 1.2 0.7 –3.1 –0.5 1.2 –1.8 –0.1 –1.4 –0.5 1.4 –1.8 –1.0
A –1.4 1.6 –1.9 –0.6 –1.0 1.7 –1.0 –0.6 1.8 1.1 –1.9 –1.9
D –0.5 –1.0 –0.1 –0.5 1.5 0.3 –1.4 1.8 –2.7 0.7 –1.0 2.0
E –1.5 –2.7 –1.9 –1.9 0.7 1.8 1.4 1.5 –1.0 1.8 1.8 0.3
G –2.7 –3.6 –2.3 –3.2 –1.5 –1.0 0.3 2.0 1.7 1.7 1.9 2.0

periodicity could be observed as a periodicity equal
to 7 points in regard to these corporations. It could be
seen in Figs. 9 and 10. Then we examined the peri-
odicities of S&P500 and NASDAG indices. These
indices obtained about 8 candles for 1 hour each day.
The 24 hours periodicity was transformed into the
8 points (one point is one candle) periodicity, which
could be seen in Figs. 11 and 12. There is an extremely
large value of Z(8); and also this periodicity induced
overtones (4, 12, 16 points, etc.). Finally, we analyzed
periodicities in the prices of gold and silver. Here we
register 23 candles in average with the duration of

1 hour. This leads to the fact that the 24 hours peri-
odicity becomes the periodicity equal to 23 points
(Figs. 13 and 14).

All these periodicities could be found, if the sym-
bols insertions or deletions are taken into account.
The number of insertions or deletions for all align-
ments of the studied financial series ranged from 35
to 46. The size of a single insertion or deletion ranged
from one symbol to 7 symbols. The question arises
about the nature of the periodicity discovered in this
work. The different periodicity processes is influenc-
ing the currency exchange rates. A person himself
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Fig. 4. The use of Fourier transform with the sequence A1. The
sequence S1 is a symbolical transformation of the sequence A1.

Fig. 5. The phase shift for the periodicity with length equal to
24 h, in the sequence S2 is shown. The X-axis shows the number
of the day in a region where there is a periodicity of 24 h. The
Y-axis shows the difference between the hour of day at the time of
opening of the candle and the column number.

possesses the inherent rhythms of different frequen-
cies; for example, Halberg (1969) classified the
humans’ biological rhythms according to the period-
icity length. He identified several groups of rhythms:

1. Low frequency group was characterized by peri-
odicities ranging from 4 days to 12 months.

2. Mid-frequency group was characterized by
periodicities ranging from 20 to 72 h.

3. High frequency group was characterized by
periodicities less than 20 h.

Therefore, it could be assumed that the observed
exchange rate periodicity at 24 and 25 h reflects the
influence of the mid-frequency rhythms upon the
exchange rate.

Fig. 6. The phase shift for the periodicity with length equal to 25 h
in the sequence S2 is shown. The X-axis shows the number of the
day in an area where there is a periodicity of 25 h. The Y-axis shows
the difference between the hour of day at the time of opening of
the candle and the column number.

Fig. 7. The spectrum of Z(n) obtained for the sequence S8 (candle
is equal to 0.5 h)

Fig. 8. The spectrum of Z(n) obtained for the sequence S9 (candle
is equal to 4 h).
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Fig. 9. The spectrum of Z(n) obtained for the sequence S2 (stock
of Bank of America).

Fig. 10. The spectrum of Z(n) obtained for the sequence S3 (stock
of Microsoft corp).

Fig. 11. The spectrum of Z(n) obtained for the sequence S4
(S&P500).

Fig. 12. The spectrum of Z(n) obtained for the sequence S5 (NAS-
DAG).

Fig. 13. The spectrum of Z(n) obtained for the sequence S6 (Gold
price).

Fig. 14. The spectrum of Z(n) obtained for the sequence S6 (Silver
price).
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An attempt was made to find the periodicity for
the sequence s(i) = x2(i)–x1(i)„ where x1(i) and x2(i)
are separated by minutes within the interval n from 2
to 70 min. No statistically significant periodicity was
found within the given interval for a “minute” of the
sequence.

It was also interesting to explain the presence of the
symbols’ insertions or deletions (it was impossible to
register frequencies without it) and the behavior of the
phase shift for the periodicities of 24 and 25 h. Proba-
bly, there exists significant instability in the behavior
of large human masses; and this instability could cre-
ate phase shifts with insertions or deletions. Also,
it could be assumed that certain events in public life
might be the cause of phase shifts, insertions, or dele-
tions. For a more accurate consideration of this issue,
a separate study shall be required. The correlations
between the phase shifts, insertions and deletions in
the sequences S1 and S2 should be examined; as well
as the events in public life and other factors of both
social and physical nature.

This work was supported by the Russian National
Foundation (http://www.rscf.ru/en). All calculations
were performed at the supercomputer cluster of the
Russian Academy of Sciences using 1000 processors
(http://www.jscc.ru/eng/index.shtml). The web site
(http://victoria.biengi.ac.ru/splinter/login.php) will
be opened in 2017 and any user will be able to analyze
any financial time series by the method developed in
this paper.
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