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Abstract
While in vitro testing is used to identify hazards of chemicals, nominal in vitro assay concentrations may misrepresent 
potential in vivo effects and do not provide dose–response data which can be used for a risk assessment. We used reverse 
dosimetry to compare in vitro effect concentrations-to-in vivo doses causing toxic effects related to endocrine disruption. 
Ten compounds (acetaminophen, bisphenol A, caffeine, 17α-ethinylestradiol, fenarimol, flutamide, genistein, ketoconazole, 
methyltestosterone, and trenbolone) have been tested in the yeast estrogen screening (YES) or yeast androgen-screening 
(YAS) assays for estrogen and androgen receptor binding, as well as the H295R assay (OECD test guideline no. 456) for 
potential interaction with steroidogenesis. With the assumption of comparable concentration–response ratios of these effects 
in the applied in vitro systems and the in vivo environment, the lowest observed effect concentrations from these assays were 
extrapolated to oral doses (LOELs) by reverse dosimetry. For extrapolation, an eight-compartment Physiologically Based 
Toxicokinetic (PBTK) rat model based on in vitro and in silico input data was used. The predicted LOEL was then compared 
to the LOEL actually observed in corresponding in vivo studies (YES/YAS assay versus uterotrophic or Hershberger assay 
and steroidogenesis assay versus pubertal assay or generation studies). This evaluation resulted in 6 out of 10 compounds 
for which the predicted LOELs were in the same order of magnitude as the actual in vivo LOELs. For four compounds, the 
predicted LOELs differed by more than tenfold from the actual in vivo LOELs. In conclusion, these data demonstrate the 
applicability of reverse dosimetry using a simple PBTK model to serve in vitro–in silico-based risk assessment, but also 
identified cases and test substance were the applied methods are insufficient.
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Introduction

The introduction of the “3Rs” principle, reduction, refine-
ment and replacement, by Russell and Burch (1959), was 
instrumental in the development of alternative methods to 
animal experimentation. Since then, alternative methods 

have been developed and validated. One of the goals is to 
replace animal testing for toxicological hazard assessment 
and ultimate for risk assessment. The so-called Tox21 strat-
egy is shifting the toxicological assessments away from tra-
ditional animal studies to target-specific, mechanism-based, 
biological observations largely obtained using in vitro assays 
(Tice et al. 2013). The overall toxicity of a compound in an 
in vivo organism is unlikely to be accurately reflected in a 
single stand-alone replacement model; rather, a battery of 
tests is required, such as those in the recently regulatory 
adopted strategy for skin sensitization (Bauch et al. 2011). 
Knowledge of physiological and toxicological pathways 
has allowed the development of adverse outcome pathways 
(AOPs), which describe the biological key events leading to 
an adverse outcome in vivo (Vinken 2013).
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One adverse outcome of concern is interference of chemi-
cals with sex hormone synthesis, regulation, and function, 
potentially disturbing reproduction and fetal development 
(WHO 2012). In 2012, the OECD has issued a guidance 
document on evaluating chemicals for endocrine disrup-
tion (OECD 2012). Since 1998, in the United States, the 
Environmental Protection Agency (EPA) requires a bat-
tery of in vitro and in vivo tests [developed from the Endo-
crine Disruptor Screening Program (EDSP)] for potential 
endocrine-disrupting chemicals (EDCs) (EPA 1998). The 
in vitro screening tests recommended by the EPA include 
an estrogen [yeast estrogen screening (YES)] or androgen 
[yeast androgen screening (YAS)] transcriptional activation 
assay (EPA 2009a; Kolle et al. 2010; OECD 2009a) and the 
steroidogenesis assay in the human derived cell line H295R 
(Kolle et al. 2010; OECD 2011). The first assays evaluate the 
effect of the compound on human steroid hormonal recep-
tors, while the latter assesses any interference of a compound 
in the steroidogenesis pathway by measuring the steroid hor-
monal concentrations. Based on the known similarity of the 
steroid receptors in rats and humans (Chang et al. 1988; 
Sun et al. 2014), as well as on the common biochemical 
pathway of steroidogenesis in mammals, these in vitro data 
should also be predictive for the rat (Ankley and Gray 2013; 
Sun et al. 2008, 2014). The in vivo studies include one-
generation [OECD test guideline (TG) 415 (OECD 1983)] 
and two-generation [OECD TG 416 (OECD 2001)] stud-
ies; the Hershberger [OECD 441 (OECD 2009b)]; and the 
uterotrophic [OECD 440, OECD 2007)] assays and also the 
in vivo pubertal assay. In addition, the in vitro assays pro-
vide information on the possible mechanisms of action of 
the endocrine activity observed in the in vivo tests (OECD 
2009a). In this study, literature data for the YES/YAS and 
steroidogenesis in vitro assays from Kolle et al. (2012) were 
used to detect potential endocrine disruption.

While in vitro testing can provide an efficient way to iden-
tify potential hazards of chemicals, nominal in vitro assay 
concentrations may misrepresent potential in vivo effects 
(Wetmore et al. 2012) and do not provide dose–response 
data which can be used for a risk assessment. Therefore, 
an in vitro-to-in vivo extrapolation (IVIVE) that trans-
lates in  vitro concentration–effect curves into in  vivo 
dose–response curves, the so-called “reverse dosimetry 
approach”, is needed (Wetmore et al. 2012; Louisse et al. 
2017; Paini et al. 2017). To investigate whether and how 
in vitro toxicity data can be used and extrapolated using 
reverse dosimetry to in vivo toxicity, we used data from the 
endocrine disruption assays in an in vitro–in silico-based 
concept. Accordingly, the lowest concentration that caused 
an effect in the toxicity assays in the absence of cytotoxicity 
or cross reactivity was defined as the in vitro point of depar-
ture (PoD). With the assumption of comparable concentra-
tion–response ratios of the addressed endocrine effects in the 

applied in vitro systems and the in vivo environment, this 
“lowest observed effect concentration (LOEC)” was then 
extrapolated to an in vivo oral dose using an eight-compart-
ment PBTK model for the rat (including the potential target 
organs, namely, the adrenals and ovaries/testes). Thus, it is 
possible to use in vitro LOEC values to determine in vivo 
PoDs, which are required for risk assessment. This strategy 
has been applied to a number of toxicological endpoints 
(Punt et al. 2011) including developmental toxicity (Li et al. 
2017; Louisse et al. 2010, 2015; Strikwold et al. 2013, 2017; 
Verwej et al. 2006); genotoxicity (Paini et al. 2010), acute 
(and repeated dose) toxicity and hepatotoxicity (Gubbels-
van Hal et al. 2005); nephrotoxicity (Abdullah et al. 2016), 
neurotoxicity (DeJongh et al. 1999a, b; Forsby and Blaau-
boer 2007); and, more recently, endocrine disruption, which 
focused on (anti)estrogenicity (Zhang et al. 2018).

PBTK models can be used to acquire more kinetic infor-
mation across species and for IVIVE (Paini et al. 2017). 
However, they are often focused on the modelling of a sin-
gle chemical and adapted as specifically as possible for that 
compound. Therefore, we evaluated and applied a simple, 
transparent, and non-commercial PBTK model that could 
also be easily adapted to other toxicological endpoints. A 
set of 10 compounds were used in the evaluation, which 
were selected from a published dataset on YES/YAS and 
steroidogenesis studies (Kolle et al. 2010, 2012). In addition 
to in vitro hepatic metabolism data, in vivo rat endocrine 
disruption toxicity data were available for all compounds 
to compare in vitro–in silico-derived LOEALs with experi-
mental data in rats.

Materials and methods

Test compounds

Test compounds were selected from a panel of compounds 
previously tested in steroidogenesis and YES/YAS in vitro 
assays to detect the potential for endocrine disruption 
(Kolle et al. 2012). From all compounds tested by Kolle 
et al. (2012), 10 compounds (Table 1) were selected based 
on the (1) internal in vitro database, (2) availability of input 
parameters for PBTK modeling, and (3) on available in vivo 
data (lowest observed effect levels, LOELs) in the rat for 
the evaluation of the in vitro–in silico-based dose–response 
description to facilitate risk assessments.

In vitro: LOEC

In the YES/YAS assays, each compound was analyzed for 
estrogen or androgen receptor-dependent reporter enzyme 
activity (agonistic and/or antagonistic). In the steroido-
genesis assay, the effects of each compound on hormone 
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Table 1   Physicochemical 
parameters and chemical 
structures of evaluated 
compounds

Compound Chemical structure CAS MW
(g/mol)

Log 
Kowa

Metabolic pathway

Acetaminophen 
(APAP)

103-
90-2

151.16 0.51 Hepatic 
metabolism via 
direct conjugation 
to glucuronide 
and sulfate—
activation 
pathway via 
CYPs and 
subsequent 
glutathione 
conjugation, 
biliary excretionb

Bisphenol A (BPA) 80-05-
7

228.29 3.81 Hepatic 
metabolism via 
direct conjugation 
to glucuronide; 
biliary excretionc,d

Caffeine (CAF) 58-08-
2

194.19 −
0.24

Hepatic 
metabolism via 
CYP1A2 to 
theobromine, 
paraxanthine and 
theophylline 
(demethylation), 
and 1,3,7-
trimethyluric acid 
(hydroxylation)e,f

17α-
Ethinylestradiol 
(EE)

57-63-
6

296.40 3.63 Hepatic and 
intestinal direct 
conjugation to 
glucuronide and 
sulfate (both 
efflux transporter 
substrates)g,h,i

Fenarimol (FEN) 60168-
88-9

331.20 3.13 Extensive 
metabolism to 
multiple 
metabolites; main 
pathway is 
oxidation with 
subsequent 
glucuronidationj

Flutamide (FLU) 13311-
84-7

276.21 2.55 Hepatic rapid and 
extensive 
metabolism to 
multiple 
metabolites; 
hydroxylation is 

k,l

Genistein (GEN) 446-
72-0

270.24 3.04 Hepatic and 
intestinal direct 
conjugation to 
glucuronide; 
biliary excretionm

Ketoconazole 
(KET)

65277-
42-1

531.43 4.30 Hepatic 
metabolism via 
oxidation 
(CYP3A4 in 
human which it 
also inhibits); 
main excretion is 
biliaryn,o

Methyltestosterone 
(MTT)

58-18-
4

302.45 3.61 Hepatic 
metabolism via 
hydroxylation 
followed by 
glucuronidation 
and sulfation; 
excreted mainly 
in uinep,q,r

Trenbolone (TRE) 10161-
33-8

270.37 2.47 Hepatic 
metabolism by 
oxidation and 
hydroxylation; 
main excretion is 
biliarys
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synthesis of H295R human adrenocortical carcinoma cells 
were determined by measuring estradiol and testosterone 
levels (Kolle et al. 2012). In a conservative approach, the 
LOEC was set as the lowest concentration from the available 
in vitro data, in which an effect was observed without cyto-
toxicity or cross reactivity. If the lowest effect concentration 
in vitro was similar for different test principles as for BPA or 
GEN, the most sensitive lowest effect level was taken from 
available in vivo tests following a worst-case assumption. 
If the highest concentration tested was without effect in the 
absence of cytotoxicity, the LOEC was defined as above the 
highest concentration tested.

PBTK modeling

An eight-compartment model set up for male and female rats 
was applied to describe kinetics and distribution of the test 

compounds. The developed model included the target tissues/
organs for endocrine disruption evaluated in vitro: adrenals 
and ovaries/testes. The principle of the model is shown in 
Fig. 1. Differential equations were used to describe a time-
dependent mass balance for each defined compartment of the 
organism. The equations of the model are shown in Table 2.

In the model, the chemicals enter the bloodstream as a 
first-order process directly via the liver after uptake in the 
gastrointestinal tract. The distribution was based on diffu-
sion. Hepatic metabolic clearance was integrated into the 
applied PBTK model and reflected the overall clearance of 
the test compound from the organism. The unbound frac-
tion of the test compound was taken into account for the 
quantification of metabolic clearance. For parent compound, 
biliary and renal clearance are not considered in the applied 
PBTK model, based on the assumption that clearance via 
these pathways is mainly based on excretion of metabolites 

MW molecular weight, safety data sheet from Sigma-Aldrich, Steinheim, Germany
a Calculated using ALOGPS
b Hjelle and Klaassen (1984)
c Snyder et al. (2000)
d Knaak and Sullivan (1966)
e Lelo et al. (1986)
f Kot and Daniel (2008)
g Zamek-Gliszczynski et al. (2011)
h Hirai et al. (1981)
i Schwenk et al. (1982)
j FAO website (2018)
k Abdelwahab et al. (2018)
l Zuo et al. (2002)
m Sfakianos et al. (1997)
n Fitch et al. (2009)
o Remmel et al. (1987)
p Hintikka et al. (2008)
q Gómez et al. (2013)
r PubMed public database (2018)
s Pottier et al. (1981)

Table 1   (continued)

Fig. 1   Principle of the applied eight-compartmental physiologically based toxicokinetic (PBTK) model
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and is therewith addressed by hepatic metabolism as its pre-
requisite principle. The model is focused on the kinetics of 
the test compound, which reflects a postulated, parent com-
pound-linked effect. Since in the applied in vitro systems, 
the identity of the metabolites may be unknown and the 
amounts negligible (OECD 2011; Routledge and Sumpter 
1996), this approach is assessed to be appropriate within the 
applied concept of in vitro-to-in vivo extrapolation.

For the calculations, the oral dose was set to 50 mg/kg 
bw. This was an arbitrarily set dose to calculate correspond-
ing Cmax values in plasma. Since all input parameters in the 
PBTK model are linear with dose, for each compound, a 
calculated constant Cmax/dose ratio can be used for reverse 
dosimetry by back-calculating the oral doses from the low-
est effect levels in vitro (set to Cmax values) by the rule of 
proportion. The differential equations were solved using the 
software Berkeley Madonna™, version 8.3.18 (developed 
by Macey et al. 2009). All the compounds were analyzed in 
one task using the built ‘batch-run’. Microsoft Excel 2013 
(Microsoft®) was used to import and analyze the data.

The target output parameters were the maximal concen-
trations (Cmax) in plasma (mean value for males and females) 
and in the target tissues (ovaries/testes and adrenal glands). 
To evaluate the PBTK predictions, the results obtained for 
Cmax in plasma were compared with measured Cmax from 

rats, extracted from the literature. As described above, in 
the applied PBTK model, the Cmax/dose ratio is constant 
and Cmax values for a given dose, from rat studies, can be 
calculated in a linear approach from the results obtained at 
the modeled dose of 50 mg/kg bw by the rule of proportion.

Physiological input parameters

The physiological parameters, including body weight, organ 
volumes, cardiac output, and blood flows, were taken from 
the literature (Brown et al. 1997; Davies and Morris 1993) 
and from in house data for male and female Wistar rats 
(Crl:Han, Charles River, Sulzfeld, Germany). Details are 
listed in Table 3.

Physicochemical input parameters

The physicochemical input parameters of the test com-
pounds consist of the octanol/water partition coefficient log 
Kow and molecular weight (Table 1). Log Pow data were 
predicted using the ALOPGS 2.1 software. The tissue parti-
tion coefficients, used to describe and model the distribution 
between blood and defined tissues, were calculated based on 
the physicochemical parameters by the following equations 
as given by DeJongh et al. (1997):

Table 2   Equations of the eight compartments used in the physiologically based toxicokinetic (PBTK) model

Ai, amount in tissue i (µmol); Pi, partition coefficient of tissue i; Ci, concentration in tissue i (µmol/L); Qi, blood flow to tissue (L/h); Vi, volume 
of tissue/organ (L); Mint, intrinsic metabolism rate and Cint, hepatic intrinsic clearance (L/h); Papp value of Caco-2 is applied to calculate ka, as 
given by Yu and Amidon (1999): the absorption rate constant for input in liver (ka = (2*((Papp*10−6)*3600))/(Rsi)) (cm/h); RSI = 0.206 radius 
of the small intestine (cm); internal data of BASF SE

Tissue Equations

Liver (L) dAL

dt
= QL

(

CA −
CL

PL

)

+
dAGI

dt
−

dAMint

dt
;
 
CL =

AL

VL
;

dAMint

dt
= CLint x CVL; CVL =

CL

PL
;dAGI

dt
= −Ka* AGI

Fat (F) dAF

dt
= QF

(

CA −
CF

PF

)

; CF =
AF

VF

Richly perfused 
(R)

dAR

dt
= QR

(

CA −
CR

PR

)

; CR =
AR
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(P)

dAP

dt
= QP

(

CA −
CP

PP

)

; CP =
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VP

Kidneys (K) dAK

dt
= QK

(

CA −
CK

PK

)

; CK =
AK

VK

Adrenals (A) dAAd

dt
= QAd

(

CA −
CAd

PAd

)

; CAd =
AAd

VAd

Ovaries (O) dAO

dt
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(

CA −
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)

; CO =
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VO

Testes (Te) dATe

dt
= QTe

(

CA −
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PTe

)

; CTe =
ATe

VTe

Venous blood (V)
dAV

dt
=

(

QL ∗
CL
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+ QF ∗

CF
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+ QK ∗

CK
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+ QAd ∗

CAd

PAd
+ Q

(

O

Te

)

∗

(

C

(

O

Te

)

P

(

O

Te

)

)

+ QR ∗
CR

PR
+ QP ∗

CP

PP
− QC ∗ CV

)

;

 
CV =

AV

VB

Arterial blood (A) CA = CV
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Equation (1) was used for liver, kidneys, adrenals, ova-
ries/testes, and richly perfused tissues, Eq. (2) for fat and 
Eq. (3) for poorly perfused tissue.

Kinetic and metabolic input parameters

Intestinal absorption was predicted using a QSAR model 
based on Caco-2 data described by the following equation 
given by Hou et al. (2004):

(1)P =
(0.081 ∗ Kow0.44

+ 0.919)

(0.004 ∗ Kow0.44 + 0.996)
− 0.19

(2)P =
(0.8 ∗ Kow0.7

+ 0.2)

(0.004 ∗ Kow0.7 + 0.996)
− 0.02

(3)P =
(0.056 ∗ Kow0.29

+ 0.944)

(0.004 ∗ Kow0.29 + 0.996)
− 0.55.

(4)Log Papp = −4.28 − 0.011 ∗ PSA,

where Papp is the apparent permeability coefficient and PSA 
is the polar surface area. PSA values were obtained in Che-
mAxon public database (2016). The results of this calcula-
tion in cm/s were thereafter converted to Papp in (cm/s)10−6.

Metabolic clearance was based on hepatic clearance 
reported in the literature or determined in S9 subcellular 
fractions of livers from Wistar rats at Cyprotex, Alderley 
Park, UK (see Table 4). Hence, the intrinsic clearance (CLint) 
in this model was based on hepatocytes, microsomal, or S9 
subcellular hepatic fractions. Since some of the chemicals 
were expected to be directly conjugated, the microsomal and 
liver S9 incubations were used that contained cofactors for 
glucuronidation (UDPGA) and sulfation (PAPS), as well as 
NADPH for oxidation reactions. CLint data were normal-
ized for hepatocytes as clearance per 106 cells, and for S9 
and microsomal fraction as clearance per mg of protein. 
To estimate the in vivo hepatic clearance, the CLint values 
were scaled up using the factors of 135*106 cells/g liver for 
hepatocytes (Houston 1994); 91.3 and 50 mg protein/g liver 
for liver S9-fraction and microsomes, respectively (BASF 
internal data).

Table 3   Physiological 
parameters used in the applied 
PBTK model

a Average values from BASF historical control database for Wistar rats Crl:Han, Charles River, Sulzfeld, 
Germany
b Brown et al. (1997)
c Arms and Travis (1988)
d Adapted from Arms and Travis (1988) in relation to data for modeled rats
e Bruce (1976)
f Saypol et al. (1981)

Physiological parameters Female Wistar Male Wistar

Body weight (g)a 179 283
Mean % of body weight
Adrenala 0.04 0.023
Bloodb 7.4 7.4
Kidneya 0.765 0.714
Fatc 7 7
Livera 2.668 2.626
Ovarya 0.051 –
Testesa – 1.123
Richly perfusedb 9.034-VLc–VKc–VAdc–(VOc/VTc)
Slowly perfusedb 7.34-VFc
Cardiac output (L/h)d 14.1*BW(0.75)

Mean % of cardiac output
Liver (QLc)b 18.3
Fat (QFc)b 7
Kidney (QKc)d 14.1
Adrenal (QAdc)d 0.3
Ovaries (QOc)e 0.665
Testes (QTc)f 0.802
Richly perfusedb 47.2-QLc–QKc–QAdc–(QOc/QTc)
Slowly perfusedb 52.8-QFc



407Archives of Toxicology (2019) 93:401–416	

1 3

The fraction unbound to protein in the plasma (fup) was 
experimentally determined by performing rapid equilib-
rium dialysis (RED). Briefly, each test compound was 
incubated with rat plasma to a final concentration of 5 µM 
(1% DMSO) in a volume of 300 µL into a donor well of a 
RED plate in duplicates. 500 µL of DPBS was added to the 
receiver well of the plate. For the dialysis, this plate was 
sealed and incubated under shaking (300 rpm) at 37 °C 
with 5% CO2 for 6 h (Thermo Scientific 2012). A sample 
of 200 µL of each well was collected and frozen at − 40 °C 
until analysis. Warfarin (WAR) was used as a reference 
compound, which is known for its high protein binding 
(Waters et al. 2008; van Liempd et al. 2011; Zhang et al. 
2012). The samples were analyzed using HPLC-MS/MS 
at Pharmacelsus, Saarbrücken, Germany. Applied methods 
are described in supplementary material 1.

The fup data were used to calculate the hepatic clear-
ance in the model using the following equation described 
by Houston (1994):

(5)CLH =
QL ∗ fuP ∗ CL

QL + fuP ∗ CL
;

dAMint

dt
= CLH ∗ CVL,

where CLH is the hepatic clearance, CL is the intrinsic clear-
ance scaled up, QL is the liver blood flow, AMint is the arte-
rial blood metabolic intrinsic rate, and CVL is the concentra-
tion in the venous blood leaving the liver.

In vivo LOEL dose

The LOEL doses were extracted from literature data for 
the respective endpoints of endocrine disruption evaluated 
in the in vitro tests. The lowest dose levels were extracted 
based on (1) data availability and confirmed adequate studies 
which followed recommended guidelines; (2) oral route of 
administration, by gavage rather than feeding; and (3) the 
appropriate assay for determined in vitro LOEC.

The uterotrophic [OECD guideline 440 (OECD 2007)] 
or Hershberger [OECD guideline 441 (OECD 2009b)] tests 
were used to assess interference with estrogen or androgen 
receptors, respectively. The in vivo pubertal assay OECD 
guidance document 150 (OECD 2018a), EPA guidelines 
(EPA 2009b, c), or one- and two-generation studies OECD 
guidelines 416 and 443 (OECD 2001, 2018b) were chosen 
to evaluate the interference with steroid hormone synthesis, 

Table 4   Kinetic and metabolic 
input parameters for PBTK 
modeling

a Units of data expressed as: µl/min/106 hepatocytes or µl/min/mg microsomal protein or µl/min/mg S9 pro-
tein
A Calculated based on the equation: Log Papp = −4.28 − 0.011 ∗ PSA (polar surface area, taken from Che-
mAxon public database 2016) described by Hou et al. (2004)
B Naritomi (2003)
C Punt et al. (2013)
D Hayes et al. (1995)
E Cyprotex (2014)
F Ito and Houston (2004)
G Berry et al. (2010)
H Kilford et al. (2008)
I Cyprotex UK (2014)
J Coldham and Sauer (2000)
K Matthew et al. (1993)

Compound Permeability 
(Caco-2)A

Clearance % Fraction unbound (fup)

Value Sourcea Experimental Literature

Acetaminophen (APAP) 15 15 HepatocytesB 79 82B

Bisphenol A (BPA) 19 361 MicrosomesC 2.8 6.8G

Caffeine (CAF) 12 1.4 HepatocytesD 65 84H

17α-Ethynylestradiol (EE) 19 243 MicrosomesC 1.1 1.6G

Fenarimol (FEN) 16 1.0 S9E 3.2 5.0I

Flutamide (FLU) 8.4 4.6 S9E 5.7 4.7I

Genistein (GEN) 5.8 505 MicrosomesC 2.7 < 10J

3.2C

Ketoconazole (KET) 9.1 55 HepatocytesF 0.4 3.7K

Methyltestosterone (MTT) 20 110 S9E 4.5 4.0I

Trenbolone (TRE) 20 43 S9E 4.8 9.4I
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for which the main endpoints are hormone levels, vaginal 
opening (for females) and preputial separation (for males) 
observed in juvenile animals or in the offspring exposed in 
utero (Hayes et al. 2010). When the LOEC corresponded 
to a concentration from more than one assessed in vitro 
system, the LOEL was taken from any of the available 
in vivo tests described above. This approach is based on the 
assumption that LOECs in vitro take into consideration data 
assessments derived from the defined respective endpoints, 
such as steroid–receptor interaction and/or interaction with 
steroidogenesis.

Reverse dosimetry: IVIVE

Results from PBTK modelling and LOECs from in vitro 
experiments were used for IVIVE. In a linear manner, dose 
levels were calculated for respective LOECs based on the 
estimated plasma Cmax versus dose plot results from PBTK. 
The calculations are summarized in Fig. 2. For this analysis, 
the non-protein bound, free fraction of a test compound at 
the time point of the Cmax in plasma was considered as cor-
related tor the endocrine induced effects. In addition, extrap-
olated dose levels in plasma were compared with in vivo 
LOELs to evaluate the accuracy of the applied PBTK model.

Sensitivity analysis

The sensitivity analysis of the model was performed for all 
compounds based on the description of Evans and Andersen 
(2000). In this approach, the sensitivity coefficient (SC) is 
defined by the initial maximum concentration (C) after 
prediction for plasma or tissue, the initial parameter of the 
model (P), the maximum concentration after increasing the 
parameter value by 5% (C′), and the changed parameter (P′) 
as shown below:

The resulting sensitivity coefficients were analyzed using 
Microsoft Excel 2013 (Microsoft®). The input parameter was 
considered to significantly affect the model output when the 
SC absolute value was higher than 0.5 (Rietjens et al. 2011). 
The output parameter assessed was the Cmax in plasma.

Results

Determination of in vitro LOEC and in vivo LOEL

For the selected compounds, the results of each in vitro assay 
including the thereof derived LOECs are shown in Table 5. 
APAP and CAF did not show any effects in these assays, and 
consequently, their LOECs for IVIVE were set to the high-
est concentrations tested without cytotoxicity (> 100 µM for 
both compounds). The LOECs were taken from YES/YAS 
for four compounds (EE, FLU, MTT, and TRE) and from 
steroidogenesis assay for two compounds (FEN and KET). 
The lowest concentrations in which an effect was observed 
were equal among the assay systems for two compounds 
(BPA and GEN).

In vivo LOELs for the defined endpoints with the respec-
tive assay are shown in Table 4. For APAP and CAF, no 
endocrine effects were described in literature and it was not 
possible to attribute any LOELs for the chosen endpoints. 
The LOELs were taken from uterotrophic/Hershberger 
assays for six compounds (BPA, EE, FLU, GEN, MTT, and 
TRE). Data from pubertal assay were taken for two com-
pounds (FEN and KET).

(6)SC =
C�

− C

P� − P
∗

P

C
.

Fig. 2   In vitro-to-in vivo extrapolation (IVIVE) based on the in vitro LOEC concentration and Cmax in plasma
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PBPK model

Input parameters

Data for permeability and clearance for each compound 
are summarized in Table 5, together with their respective 
sources. Experimental data for fup, which was used for 
PBTK modelling, and the corresponding available litera-
ture data are also presented in Table 5. For BPA, FEN, GEN, 
KET, and TRE, literature values are slightly higher than 
experimentally determined fup. The highest difference was 
noted for KET, which is known for its high binding capacity. 
However, the experimentally determined fup for the refer-
ence compound WAR (0.4 ± 0.2%, mean ± standard devia-
tion between 3 experiments) corroborates the literature data 
(< 1%, Waters et al. 2008; van Liempd et al. 2011; Zhang 
et al. 2012) and shows the reproducibility of the performed 
experiments.

Output parameters: predicted plasma Cmax

The predicted plasma Cmax using PBTK modelling were 
compared to in vivo data for six compounds for which data 
were available (Table 6). The PBTK model predicted the 
plasma Cmax for 67% of the test compounds (4/6—APAP, 
CAF, EE, and KET) in the same order of magnitude as that 
in vivo. BPA and GEN modeled concentrations were one 
order of magnitude higher than literature in vivo values. 
Further details are summarized in Table 6.

In vitro‑to‑in vivo extrapolation (IVIVE)

For 8 compounds, the IVIVE approach predicted doses in 
plasma that were correlated to the in vivo LOEL from litera-
ture (Table 4). For the evaluation, compounds with values 
that were within tenfold of the in vivo LOEL were consid-
ered to be correctly predicted. The correctly predicted com-
pounds were BPA, FEN, GEN, and KET. Two compounds 
were over-predicted (MTT and TRE) and two compounds 
were under-predicted (EE and FLU). There was no trend 

Table 5   Determination of in vitro lowest observed effect concentration (LOEC) of tested compounds and comparison between in vitro–in vivo 
extrapolated (IVIVE) lowest effect levels based on PBTK modeling and in vivo-derived lowest observed effect levels (LOEL)

A androgenic effect, AA anti-androgenic effect, E estrogenic effect, AE anti-estrogenic effect, NF no in vivo LOEL was found for the described 
endpoints, NT not tested
a Cytotoxicity at higher concentrations
b Cross reactivity with measurement assay at higher concentrations
c Higher LOEC was taken from data, where an effect was obtained without cytotoxicity or cross reactivity
A Kolle et al. (2012)
B In house BASF data
C Kanno et al. (2003)
D Kanno et al. (2001)
E US Environmental Protection Agency (2007)
F Taxvig et al. (2008)
G Shin et al. (2007)
H Owens et al. (2007)

Compound LOEC (µM)A In vitro 
LOEC 
(µM)

In vivo-derived LOEL In vitro–in 
silico-based 
LOELSteroidogenesis YES YAS (mg/kg) Assay

Estradiol Testosterone

Acetaminophen (APAP) NT NT > 100B > 100B > 100 NF – > 93
Bisphenol A (BPA) 10 10 10 (E) 10 (AA) 10 375 UterotrophicC 515
Caffeine (CAF) > 100 > 100 > 100 > 100 > 100 NF – > 39
17α-Ethynylestradiol (EE) 0.03 0.1 0.001 (E) 1/0.1(A/AA) 0.001 0.001 UterotrophicD 0.13
Fenarimol (FEN) 10 10 100 (E) > 10a 10c 50 PubertalE 420
Flutamide (FLU) > 3B > 3B NT 10 (AA)B 10 10 HershbergerF 205
Genistein (GEN) 1 10 1 (E) > 100 1 20 UterotrophicC 143
Ketoconazole (KET) 1 0.1 > 0.1a > 0.01a 0.1c 100 PubertalE 100
Methyltestosterone (MTT) 3 > 3b 10 (E, AE) 0.01 (A) 0.01 10 HershbergerG 0.38
Trenbolone (TRE) 1B 10B 1 (E) 0.1 (A) 0.1 40 HershbergerH 2.1
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between compounds under or over-predicted in terms of 
physicochemical properties or clearance pathways. Using 
this decision criterion, 50% of the test compounds (4/8) were 
correctly predicted. Assuming no literature evidence in vivo 
for the assessed endpoints for correct negative compounds 
in the in vitro assays (APAP and CAF), the current IVIVE 
model correctly predicted 60% (6/10) using this in vitro in 
silico-based risk assessment approach.

Sensitivity analysis

A sensitivity analysis of the model was performed for all 
compounds (supplementary data, Table S1). Sensitivity 
analysis demonstrated that, generally, the intestinal perme-
ability and the lipophilicity input parameters highly influ-
enced the output parameter, Cmax in plasma. SC absolute 
values were higher than 0.5 for Log Kow for BPA, EE, FEN, 
FLU, GEN, KET, MTT, and TRE for intestinal absorption 
(quantified via Papp) for APAP, BPA, EE, FEN, GEN, KET, 
MTT, and TRE.

Discussion

In the current case study, we followed basic principles of the 
concept of animal-free risk assessment and used, as start-
ing point, available in vitro data for endpoints of endocrine 
disruption. Although the species of interest for animal- free 
risk assessment is human, especially when taking tests in 
human in vitro systems into consideration, we applied the 
principle of in vitro-to-in vivo extrapolation for rats. We 
did this to be able to assess obtained in vitro–in silico-based 
results versus available literature data from corresponding 
standardized in vivo tests in the rat. For this purpose, we 
applied PBTK modeling for an in vitro–in silico-based risk 
assessment for a set of 10 compounds. A first assumption 
was that the concentration–response ratios of the addressed 
endocrine effects in the applied in vitro systems were com-
parable to the in vivo environment. This assumption is a 
general issue in in vitro toxicology and drug discovery 
(Smith et al. 2010; Lu et al. 2011) and is a prerequisite for 
IVIVE, since the concentration–effect ratio is given for the 
test substance concentration in the buffer/medium and the 
readout for in vitro testing and is related directly to plasma 
concentration–effect ratios in vivo. As shown for endocrine 
effects of 17β-estradiol (E2) and BPA based on YES assays, 
results of these in vitro tests yielded better in vitro in vivo 
correlation than the MCF-7/BOS proliferation assay or the 

Table 6   Estimated maximum 
plasma concentrations (Cmax) 
compared to in vivo-based Cmax 
values

a Values from the literature are given for oral administration
b PBTK concentrations are based on in vivo doses of the literature and sex for BPA
c For EE in vivo plasma concentration are given as the mean between male and female for unconjugated 
drug; therefore, the in silico PBTK Cmax was corrected by the unbound fraction
A Abu-Qare and Abou-Donia (2001)
B An et al. (2012)
C Pottenger et al. (2000)
D Twaddle et al. (2003)
E Chen and Bakhiet (2006)
F Soucy (2005)
G Hamdy and Brocks (2008)

Compound Dosea (mg/kg) Cmax (µM)

In vivo In silico PBTK

Acetaminophen (APAP)A,B 5A 6.6 ± 1.9A 6.8
200B 309 ± 169B 272

Bisphenol Ab (BPA)C ♀:10 0.2 7
♀:100 10 70

Caffeine (CAF)A 1 1.7 ± 0.8 3.9
17α-Ethynylestradiolc (EE)D 1 3.4*10−3 7.8*10−3

Genistein (GEN)E,F 154E 0.7 ± 0.1 40
308E 1.1 ± 0.2 80
406 9.6 ± 2.4*10−2 10

Ketoconazole (KET)G 10 6.2 ± 3.6 2.6
10 2.9 ± 1.7 2.6
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U2OS ER-CALUX assay (Zhang et al. 2018). The LOEC 
in vitro was extrapolated to an oral dose by reverse dosim-
etry applying a PBTK model for the rat. This correlates to 
a predicted LOEL in vivo, which was compared with the 
measured LOELs in in vivo studies for endocrine disrup-
tion to gain experience on the predictivity of such a concept 
and therewith knowledge on its potential future applicability.

As a simple approach, it was assumed that for each com-
pound, the LOEC in the in vitro tests indicates the most 
sensitive endpoint and is a relevant parameter for risk assess-
ment. The lowest LOEC values were from YES or YAS 
binding assays for EE, KET, MTT, and TRE; therefore, the 
corresponding in vivo endpoints used for comparison were 
the uterotrophic or Hershberger assay, respectively. For FEN 
and FLU, the LOEC values were from the steroid mapping 
assays. Consequently, predicted LOEL values were com-
pared with the LOELs from the in vivo pubertal assay or 
one- and two-generation studies. APAP and CAF did not 
show clear effects in the in vitro assays up to the highest 
concentrations tested. Therefore, the highest concentration 
was translated into a corresponding in vivo dose that should 
be considered not to induce any endocrine effect.

For the applied IVIVE approach, it was assumed that a 
concentration (not area under the curve)-related endocrine 
effect was due to the parent compound. This is justified 
by in vitro tests that take receptor binding and/or enzyme 
interactions, both established as typical concentration-driven 
processes, as relevant modes of action into account. In addi-
tion, the nominal compound concentration is assumed to be 
responsible for effects in tests which have limited metabolic 
functions (Coecke et al. 2006). However, the understanding 
of exposure in in vitro testing becomes critical in the applied 
concept, since the nominal dose may not be the effective-
free concentration if it binds to the plastic culture vessel or 
medium components, or evaporates (Groothuis et al. 2013). 
The assumption that the parent compound causes the toxic 
effect also implies that its metabolites do not contribute to 
the endocrine effects. The relevance of metabolic activation 
(Dekant 2009) is widely recognized and ways to implement 
this in vitro systems are described generally (Landsiedel 
et al. 2011), but these principles are not yet universally 
applied.

For the IVIVE, the maximum plasma concentration 
(Cmax) after a simulated single oral dose was adjusted to 
equal to the LOEC in vitro. This is a simplified and straight-
forward approach for compounds with short half-lives. How-
ever, this approach has a number of caveats. First, it may fail 
for compounds that accumulate, resulting in significantly 
higher steady-state concentrations after multiple dosing than 
after single dosing. Second, it is assumed that the test com-
pounds do not induce or inhibit metabolizing enzymes in 
the liver, which would also significantly change compound 
kinetics after multiple dosing compared to single dosing. In 

addition, inter-individual differences in kinetics that may be 
addressed in Monte Carlo models are not taken into consid-
eration in the presented basic IVIVE approach.

For PBTK modeling, Cmax in plasma was defined as the 
dose metric related to the lowest nominal effect concentra-
tions in the respective in vitro assay. With the assumption 
that medium in the in vitro test system mirrors blood in a 
living organism, both providing nutrients to the cells and 
distributing the test substances within the system to the cells, 
this compartment was chosen to bridge the nominal in vitro 
concentrations to in vivo. The targets of the endocrine effects 
(ovaries, testes and/or adrenals) were added to the PBTK 
model as a future option, but should then be linked to in vitro 
effect concentrations of test substances in the tested cells 
or directly at the site of action. Based on available litera-
ture data that describe the observed effects as a function of 
nominal concentrations, this approach may be followed by 
the application of in vitro dosimetry concepts as described 
by (Groothuis et al. 2013), but was not addressed within 
the current case study. Since for the investigated potential 
endocrine disruptors, the investigated key events of recep-
tor binding and enzyme interactions are concentration, not 
AUC-mediated effects, the maximum-free concentration of 
the test compound in plasma was applied for extrapolation. 
This approach reflects a worst-case scenario, since Cmax as 
dose metric results in the lowest possible estimated LOEL.

For in  vitro-to-in vivo extrapolation, plasma protein 
binding was taken into consideration and the free concen-
tration of the test compound in plasma was calculated. It 
was assumed that the free fraction of compound affects the 
toxicological activity (Smith et al. 2010). This implies that 
the compound: (1) does not induce irreversible inactivation 
of the target, e.g., by covalent binding; (2) does not act via 
multiple mechanisms and by activation of target-mediated 
events; and (3) has an equal action/potency in the in vitro 
assays, as it does in vivo. Rapid equilibrium dialysis (RED) 
was chosen for the determination of the unbound fraction 
of the compound in plasma, because in our experiments, 
this method was robust in respect of recovery, replicability, 
and obtained results of the positive control Warfarin (Zhang 
et al. 2012).

Further assumptions for PBTK modeling were that 
hepatic clearance drives the overall clearance of the test 
compound in the organism and other clearance mechanisms 
were not taken into consideration. This is true for many com-
pounds, such that extrahepatic metabolism is minor com-
pared to hepatic metabolism (Gundert-Remy et al. 2014; 
Oesch et al. 2018), and the metabolites, not the parent com-
pound, are excreted via urine and/or bile. Consequently, in 
the overall clearance process, metabolism is the time critical 
process of elimination. This assumption is likely to be valid 
for most of the modeled compounds in our analysis, since 
the major metabolites of most of the test compounds are 
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either oxidized and/or direct glucuronic acid and/or sulfate 
conjugates, which are excreted in the feces or urine (see 
Table 1 for metabolic and excretion pathways). The excep-
tion to this was EE and GEN, whereby intestinal first-pass 
metabolism contributes extensively to their overall metabo-
lism in the rat, such that conjugation in the intestine reduces 
significantly their bioavailability (Hirai et al. 1981; Schwenk 
et al. 1982; Sfakianos et al. 1997). Since the current IVIVE 
concept did not take extrahepatic metabolism of EE or GEN 
into account and assumes direct uptake of the compounds 
from the GI tract, the model could consequently underesti-
mate the extrapolated LOEL, although this was not the case 
for EE and GEN (Table 4). Therefore, the total clearance 
of the modeled compounds in this evaluation may be well 
reflected by their hepatic clearance. In this strategy, intrinsic 
clearance was linearly correlated to substrate concentrations 
and for higher plasma concentrations, this approach may 
overestimate hepatic clearance. Therefore, it may be consid-
ered for a potential higher tier modeling to apply Michaelis 
Menten parameters for the description of the kinetics of the 
metabolism of the test compound if available, or to deter-
mine them in appropriate experiments.

Another assumption of the PBTK modeling is that dis-
tribution is based on diffusion and the resulting steady-state 
concentrations are described by blood/tissue partition coef-
ficients that are derived from physicochemical parameters 
of the test compounds, as described by (Jones and Row-
land-Yeo 2013). This means that active transport was not 
addressed for modeling uptake and distribution of the test 
compound between defined compartments. Hence, this dif-
fusion-based modeling is correct only if active transport pro-
cesses are negligible. Although for the current modeled test 
compounds, APAP, EE, KET, BPA, and GEN are described 
in the literature to be substrates or inhibitors of active trans-
porters (Manov et al. 2006; Zamek-Gliszczynski et al. 2011; 
Englund et al. 2014; Mazur et al. 2012; Ge et al. 2017), the 
quantitative input in the overall kinetics of these compounds 
is difficult to judge and should be addressed in future works.

Sensitivity analysis demonstrated that, generally, per-
meability (based on Papp), and log Kow input parameters 
highly influenced the output parameter cmax in plasma. First, 
the SC absolute value was higher than 0.5 for Log Kow for 
8 of 10 substances (BPA, EE, FEN, FLU, GEN, KET, MTT, 
and TRE). Likewise, the SC absolute value was higher than 
0.5 for Papp for also 8 of 10 substances (APAP, BPA, EE, 
FEN, GEN, KET, MTT, and TRE). SC absolute values were 
lower than 0.5 for all other investigated input parameters. 
In general, hepatic clearance of the compounds had minor 
influence on Cmax. This means that with respect to the kinet-
ics of the test compounds, absorption and partitioning of the 
compounds are the main drivers of Cmax. Therefore, special 
attention should be given to these input parameters when the 
current dose metric is applied. It should be mentioned here 

that changing the dose metric will also change the sensitivity 
of input parameters and AUC or average plasma concentra-
tion, which are more dependent on clearance than Cmax.

Plasma kinetics data from in vivo experiments in rats 
were available for 6 of the 10 test compounds and were used 
to compare with predicted Cmax values (see Table 6). The 
modeled Cmax values for APAP, CAF, EE, and KET are in 
general accordance with the measured in vivo data and differ 
by less than threefold. By contrast, predicted Cmax values for 
BPA and GEN clearly overestimate the in vivo Cmax by more 
than tenfold. Thus, modeled plasma concentrations could be 
considered valid (within threefold of the in vivo value) for 
4 out of 6 compounds, i.e., 66% were correctly predicted. 
These results are similar to those of a study in which a six-
compartment rat PBTK model was used for a set of active 
ingredients of plant protection products (50% were correctly 
predicted) (Fabian et al. 2015).

Using reverse dosimetry to predict the in vivo LOEL for 
endocrine disruption, 6 of 10 LOELs were predicted within 
the correct order of magnitude. The predicted LOELs dif-
fered by more than tenfold from the described in vivo value 
for 4 compounds, 2 of which were over and 2 were under-
predicted. Interestingly, for EE, although the LOEL estima-
tion was more than tenfold higher than the in vivo value, 
the calculation of its Cmax was well predicted. This implies 
that the in vitro result may not reflect a relevant value. In 
contrast to EE, the LOEL estimations for BPA and GEN 
were within tenfold of the in vivo value, whereas the pre-
dictions of their Cmax values were more than tenfold higher 
than in vivo values. This observation is interesting, since 
a correct prediction of an LOEL based on PBTK model-
ling is critical in respect of the defined assumptions of the 
applied strategy. The LOELs for FLU, MTT, and TRE were 
not well predicted, with more than one order of magnitude 
difference between the modeled and observed in vivo val-
ues (in vivo Cmax values were unavailable for these three 
compounds). Reasons for these lacks of correlation could 
be limitations of the applied models which do not consider, 
e.g., deviation from the assumed linear kinetics of hepatic 
clearance, extrahepatic metabolism, enterohepatic recircula-
tion, renal clearance, and active transport of the compound 
(as described above).

Endocrine disruption served as an example to correlate 
concentrations causing in vitro effects-to-in vivo effect 
doses using IVIVE reverse dosimetry. This IVIVE concept 
is also applicable to other toxicological effects. To make risk 
assessments based on in vitro and in silico methods widely 
applicable and acceptable, those cases or test substances, 
for which the IVIVE predictions (or in vitro models) are 
not correlating with in vivo data, need to be reliably identi-
fied and the inadequacies of the models need to be clarified. 
This can then be used to amend and improve the methods 
accordingly.
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