
Theory Comput Syst (2018) 62:772–809
DOI 10.1007/s00224-017-9802-9

Complexity and Expressive Power of Weakly
Well-Designed SPARQL

Mark Kaminski1 ·Egor V. Kostylev1

Published online: 14 August 2017
© The Author(s) 2017. This article is an open access publication

Abstract SPARQL is the standard query language for RDF data. The distinctive fea-
ture of SPARQL is the OPTIONAL operator, which allows for partial answers when
complete answers are not available due to lack of information. However, optional
matching is computationally expensive—query answering is PSPACE-complete. The
well-designed fragment of SPARQL achieves much better computational properties
by restricting the use of optional matching—query answering becomes coNP-
complete. On the downside, well-designed SPARQL captures far from all real-life
queries—in fact, only about half of the queries over DBpedia that use OPTIONAL
are well-designed. In the present paper, we study queries outside of well-designed
SPARQL. We introduce the class of weakly well-designed queries that subsumes
well-designed queries and includes most common meaningful non-well-designed
queries: our analysis shows that the new fragment captures over 99% of DBpedia
queries with OPTIONAL. At the same time, query answering for weakly well-
designed SPARQL remains coNP-complete, and our fragment is in a certain sense
maximal for this complexity. We show that the fragment’s expressive power is strictly
in-between well-designed and full SPARQL. Finally, we provide an intuitive normal
form for weakly well-designed queries and study the complexity of containment and
equivalence.

Keywords RDF query languages · SPARQL · Optional matching

This article is part of the Topical Collection on Special Issue on Database Theory

� Mark Kaminski
mark.kaminski@cs.ox.ac.uk

� Egor V. Kostylev
egor.kostylev@cs.ox.ac.uk

1 Department of Computer Science, University of Oxford, Oxford, UK

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-017-9802-9&domain=pdf
http://orcid.org/0000-0002-8712-2953
mailto:mark.kaminski@cs.ox.ac.uk
mailto:egor.kostylev@cs.ox.ac.uk

Theory Comput Syst (2018) 62:772–809 773

1 Introduction

The Resource Description Framework (RDF) [14, 18, 31] is the W3C standard for
representing linked data on the Web. RDF models information in terms of labelled
graphs consisting of triples of resource identifiers (IRIs). The first and last IRIs in
such a triple, called subject and object, represent entity resources, while the middle
IRI, called predicate, represents a relation between the two entities.

SPARQL [17, 37] is the default query language for RDF graphs. First stan-
dardised in 2008 [37], SPARQL is now recognised as a key technology for the
Semantic Web. This is witnessed by a recent adoption of a new version of the
standard, SPARQL 1.1 [17], as well as by active development of SPARQL query
engines in academia and industry, for instance, as part of the systems Allegro-
Graph (http://franz.com/agraph/allegrograph/), Apache Jena (http://jena.apache.org),
RDF4J (http://rdf4j.org), or OpenLink Virtuoso (http://virtuoso.openlinksw.com).

In recent years, SPARQL has been subject to a substantial amount of theoretical
research, based on the foundational work by Pérez et al. [32, 33]. In particular, we
now know much about evaluation [1, 3, 4, 6, 8, 20, 22, 23, 25, 28, 34, 38], optimisa-
tion [8, 9, 12, 13, 24, 27, 35], federation [10, 11], expressive power [2, 20, 21, 25, 36,
39], and provenance tracking [15, 16] for queries from various fragments and exten-
sions of SPARQL. These studies have had a great impact in the community, in fact
influencing the evolution of SPARQL as a standard.

A distinctive feature of SPARQL as compared to SQL is the OPTIONAL operator
(abbreviated as OPT in this paper). This operator was introduced to “not reject (solu-
tions) because some part of the query pattern does not match” [37]. For instance,
consider the SPARQL query

SELECT ?i, ?n
WHERE (?i,rdf:type,foaf:person) OPT (?i,foaf:name, ?n),

(1)
which retrieves all person IDs from the graph together with their names; names, how-
ever, are optional—if the graph does not contain information about the name of a
person, the person ID is still retrieved but the variable ?n is left undefined in the
answer. For instance, query (1) has two answers over the graph G in Fig. 1a, where
the second answer is partial (see Fig. 1b). However, if we extend G with a triple
supplying a name for P2, the second answer will include this name.

The OPT operator accounts in a natural way for the open world assumption and
the fundamental incompleteness of the Web. However, evaluating queries that use
OPT is computationally expensive—Pérez et al. [33] showed PSPACE-completeness
of SPARQL query evaluation, and Schmidt et al. [38] refined this result by proving
PSPACE-hardness even for queries using no operators besides OPT. This is not sur-
prising given that SPARQL queries are equivalent in expressive power to first-order
logic queries, and translations in both directions can be done in polynomial time [2,
25, 36].

This spurred a search for restrictions on the use of OPT that would ensure lower
complexity of query evaluation. It was also recognised that queries that are difficult to
evaluate are often unintuitive. For instance, they may produce less specified answers

http://franz.com/agraph/allegrograph/
http://jena.apache.org
http://rdf4j.org
http://virtuoso.openlinksw.com

774 Theory Comput Syst (2018) 62:772–809

(a) (b)

(c) (d)

Fig. 1 (a) Graph G; (b) answers to query (1) over G; (c) graph G′; and (d) answers to (2) over G′

(i.e., answers with fewer bound variables) as the graph over which they are evaluated
grows larger.

Pérez et al. [33] introduced the well-designed fragment of SPARQL queries by
imposing a syntactic restriction on the use of variables in OPT-expressions. Roughly
speaking, each variable in the optional (i.e., right) argument of an OPT-expression
should either appear in the mandatory (i.e., left) argument or be globally fresh for
the query, i.e., appear nowhere outside of the argument. Well-designed queries have
lower complexity of query evaluation—the problem is CONP-complete (provided all
the variables in the query are selected). Moreover, such queries have a more intuitive
behaviour than arbitrary SPARQL queries; in particular, they enjoy the monotonic-
ity property that we observed for query (1): each partial answer over a graph can
potentially be extended to undefined variables if the graph is completed with the
missing information, and the more information we have the more specified are the
answers. Well-designed queries can be efficiently transformed to an intuitive normal
form allowing for a transparent graphical representation of queries as trees [27, 35].
Hence, many recent studies concentrate partially [23, 25, 27, 40, 41] or entirely [1,
8, 35] on well-designed queries.

Such a success of well-designed queries may lead to the impression that non-well-
designed SPARQL queries are just a useless side effect of the early specification. But
is this impression justified by the use of SPARQL in practice? To answer this ques-
tion, a comprehensive analysis of real-life queries is required. We are aware of two
works that analyse the distribution of operators in SPARQL queries asked over DBpe-
dia [7, 34]. Both studies show that OPT is used in a non-negligible amount of practical
queries. However, only Picalausa and Vansummeren [34] go further and analyse how
many of these queries are well-designed; and the result is quite interesting—well-
designed queries make up only about half of all queries with OPT. In other words,
well-designed queries are common, but by far not exclusive.

The main goal of this paper is to investigate SPARQL queries beyond the well-
designed fragment. We wanted to see if the well-designedness condition could be
extended so as to include most practical queries while preserving good computa-
tional properties. The main result of our study is very positive—we identified a new
fragment of SPARQL queries, called weakly well-designed queries, that covers over
99% of queries over DBpedia and has the same complexity of query evaluation as

Theory Comput Syst (2018) 62:772–809 775

the well-designed fragment. We also show that our fragment is in a sense maximal
for this complexity.

We next describe our results and techniques in more detail. Our first step was to
identify typical real-life queries that are not well-designed. We analysed DBpedia
query logs in recent USEWOD research datasets [29, 30] and found two interesting
types of non-well-designed queries. The first type is exemplified by the following
query:

SELECT ?i, ?n
WHERE ((?i,rdf:type,foaf:person) OPT (?i,foaf:name, ?n))

OPT (?i,v card:name, ?n).

(2)
This query is clearly not well-designed because variable ?n, binding the name of a
person, appears in two different unrelated optional parts. Let us analyse answers to
this query over different graphs. On graph G in Fig. 1a the result is exactly the same
as for query (1), shown in Fig. 1b, simply because the IRI v card:name is not
present in G, and so cannot be matched against the second optional part of the query.
Similarly, on graph G′ in Fig. 1c, where the source of the name and the name itself
are different, the result is as in Fig. 1d. In this case, the first optional part in the query
does not match anything in the graph so the variable ?n is left unbound at this point;
then the second optional is matched, and the variable is assigned with the name from
v card. More interestingly, query (2) evaluated over the graph G ∪ G′ once again
yields the result in Fig. 1b. Indeed, in this case, the first optional part has a match
again and ?n is assigned the value Ana; then, this variable is already bound and there
is no match for the second optional part that agrees with this value, meaning that
the alternative v card name is disregarded by the query. To summarise, query (2)
is once again looking for person IDs and, optionally, their names. Now, however,
names are collected from two different sources, foaf and v card, where the first
source is given preference over the second (maybe because it is considered more
reliable or more informative, or for some other reason). In other words, if we know
the foaf name of a person, it is returned as part of the answer regardless of their
v card name; however, if there is no foaf name, then the v card name is also
acceptable and should be returned; variable ?n is left unbound only if the name cannot
be extracted from either source.

Of course, preference patterns encountered in real-life queries are often more com-
plex. Still, we will see that in most cases they do not increase the complexity of query
evaluation.

Our second example query is as follows:

SELECT ?i, ?n
WHERE ((?i,rdf:type,foaf:person) OPT (?i,foaf:name, ?n))

FILTER (¬bound(?n) ∨ ¬(?n = Ana)).

(3)
The query uses FILTER, a standard SPARQL operator that admits only answers con-
forming to a specified constraint. Again, this query is not well-designed because the
FILTER constraint mentions the variable ?n, which occurs in the optional part of the
query but not in the mandatory part. However, the intention of the query is quite

776 Theory Comput Syst (2018) 62:772–809

clear: it searches for people whose names are not known to be Ana, including people
whose names are unknown.

This use of FILTER is in fact very common in real-life queries. Moreover, it is
intuitive as long as FILTER is essentially the outermost operator in the query, as it is
in our example. We will see that in all such cases FILTER cannot lead to an increase
in complexity.

Having isolated these typical uses of non-well-de-signed-ness, we identify a new
fragment of SPARQL that (a) includes all queries of the above two types, (b) sub-
sumes well-designed queries, and (c) has the same complexity of query evaluation
as well-designed queries. We call such queries weakly well-designed. They are the
maximal fragment without structural restrictions on conjunctive blocks and filter
conditions that has the above properties. Our analysis shows that more than 99% of
DBpedia queries with OPT are weakly well-designed.

Besides low complexity of query evaluation, we establish a few more useful
properties of weakly well-designed queries, which are summarised in the follow-
ing outline of the paper. After introducing the syntax and semantics of SPARQL
in Section 2, we formally define our new fragment in Section 3. In Section 4, we
show that, similarly to the well-designed case, weakly well-designed queries can be
transformed to an intuitive normal form, which allows for a natural graphical rep-
resentation as constraint pattern trees. Using this representation, in Section 5, we
formally show that the step from well-designed to weakly well-designed queries
does not increase complexity of query evaluation; minimal relaxations of weak well-
designedness, however, already lead to a complexity jump. In Section 6, we compare
the expressive power of our fragment (and its extensions with additional operators)
with well-designed queries and unrestricted SPARQL queries; in all cases, we show
that the expressivity of weakly well-designed queries lies strictly in-between well-
designed and unrestricted queries. In Section 7, we study static analysis problems
for weakly well-designed queries and establish �

p

2 -completeness of equivalence and
containment. Finally, in Section 8, we detail our analysis of DBpedia logs.

This article significantly extends the conference paper [19]. Besides providing full
proofs of our technical claims, we have extended the analysis section and updated
the evaluation to use more recent datasets. Furthermore, we have removed the erro-
neous claim that queries over unions of weakly well-designed patterns have the same
expressive power as unrestricted SPARQL queries; on the contrary, we show that the
former are strictly less expressive than the latter.

2 SPARQL Query Language

We begin by formally introducing the syntax and semantics of SPARQL that we
adopt in this paper. Our formal setup mostly follows [33], which has some differences
from the W3C specification [17, 37]; in particular, we use two-placed OPT and two-
valued FILTER (conditional OPT and errors in FILTER evaluation as in the standard
are expressible in our formalisation [2, 21]), do not consider blank nodes (their pres-
ence in RDF graphs would not change any of our results), and adopt set semantics,
leaving multiset answers for future work.

Theory Comput Syst (2018) 62:772–809 777

RDF Graphs An RDF graph is a labelled graph where nodes can also serve as edge
labels. Formally, let I be a set of IRIs. Then an RDF triple is a tuple (s, p, o) from
I × I × I, where s is called subject, p predicate, and o object. An RDF graph is a
finite set of RDF triples.

SPARQL Syntax Let X be an infinite set {?x, ?y, . . .} of variables, disjoint from I.
Filter constraints are conditions of the form

– �, ?x = u, ?x = ?y, or bound(?x) for ?x, ?y in X and u ∈ I (these constraints
are called atomic),

– ¬R1, R1 ∧ R2, or R1 ∨ R2 for filter constraints R1 and R2.

A basic pattern is a possibly empty set of triples from (I∪X)× (I∪X)× (I∪X) (to
avoid notational clutter, in examples we will often omit braces when writing singleton
basic patterns, e.g., we will write (?x, u, ?y) instead of {(?x, u, ?y)}). Then, SPARQL
(graph) patterns P are defined by the grammar

P ::= B | (P AND P) | (P OPT P) | (P UNION P) | (P FILTER R),

where B ranges over basic patterns and R over filter constraints. Additionally, we
require all filter constraints to be safe, that is, vars(R) ⊆ vars(P) for every pattern
(P FILTER R), where vars(S) is the set of all variables in S (which can be a pattern,
constraint, etc.) When needed, we distinguish between patterns by their top-level
operator; e.g., we write OPT-pattern or FILTER-pattern.

We write U for the set of all patterns. We also distinguish the fragment P of U
that consists of all UNION-free patterns, that is, patterns that do not use the UNION
operator.

Projection is realised in SPARQL by means of queries with select result form, or
queries for short, which are expressions of the form

SELECT X WHERE P, (4)

where X is a set of variables and P is a graph pattern. We write S for the set of all
queries. The set of all triples in basic patterns of a query Q is denoted triples(Q).

Note that every pattern P can be seen as a query of the form (4) where X =
vars(P). Hence, all definitions that refer to “queries” implicitly extend to patterns in
the obvious way.

SPARQL Semantics The semantics of graph patterns is defined in terms of map-
pings, that is, partial functions from variables to IRIs. The domain dom(μ) of a
mapping μ is the set of variables on which μ is defined. Two mappings μ1 and
μ2 are compatible (written μ1 ∼ μ2) if μ1(?x) = μ2(?x) for all variables ?x ∈
dom(μ1) ∩ dom(μ2). If μ1 ∼ μ2, then μ1 ∪ μ2 constitutes a mapping with domain
dom(μ1) ∪ dom(μ2) that coincides with μ1 on dom(μ1) and with μ2 on dom(μ2).
Given two sets of mappings �1 and �2, we define their join, union and difference as
follows:

�1 �� �2 = {μ1 ∪ μ2 | μ1 ∈ �1, μ2 ∈ �2, and μ1 ∼ μ2},
�1 ∪ �2 = {μ | μ ∈ �1 or μ ∈ �2},
�1 \ �2 = {μ1 | μ1 ∈ �1, μ1 �∼ μ2 for all μ2 ∈ �2}.

778 Theory Comput Syst (2018) 62:772–809

Based on these, the left outer join operation is defined as

Given a graph G, the evaluation �P �G of a graph pattern P over G is defined as
follows:

1. if B is a basic pattern, then �B�G = {μ : vars(B) → I | μ(B) ⊆ G};
2. �(P1 AND P2)�G = �P1�G �� �P2�G;
3.
4. �(P1 UNION P2)�G = �P1�G ∪ �P2�G;
5. �(P ′ FILTER R)�G = {μ | μ ∈ �P ′�G and μ |= R},

where μ satisfies a filter constraint R, denoted by μ |= R, if one of the following
holds:

– R is �;
– R is ?x = u, ?x ∈ dom(μ), and μ(?x) = u;
– R is ?x = ?y, {?x, ?y} ⊆ dom(μ), and μ(?x) = μ(?y);
– R is bound(?x) and ?x ∈ dom(μ);
– R is a Boolean combination of filter constraints evaluating to true under the

usual interpretation of ¬,∧, and ∨.

Let μ|X be the projection of a mapping μ to variables X, that is, μ|X(?x) = μ(?x)

if ?x ∈ X and μ|X(?x) is undefined if ?x /∈ X. The evaluation �Q�G of a query Q of
the form (4) is the set of all mappings μ|X such that μ ∈ �P �G.

Finally, a solution to a query (or pattern) Q over G is a mapping μ such that
μ ∈ �Q�G.

3 Weakly Well-Designed Patterns

We begin by recalling the notion of well-designed patterns and then formulate our
generalisation. For now, we focus on the fragment P of UNION-free patterns (also
known as the AND-OPT-FILTER fragment of SPARQL), leaving the operators UNION
and SELECT for later sections.

Note that a given pattern can occur more than once within a larger pattern. In
what follows we will sometimes need to distinguish between a (sub-)pattern P as a
possibly repeated building block of another pattern P ′ and its occurrences in P ′, that
is, unique subtrees in the parse tree. Then, the left (right) argument of an occurrence
i is the subtree rooted in the left (right) child of the root of i in the parse tree, and an
occurrence i is inside an occurrence j if the root of i is a descendant of the root of j .

Definition 1 (Pérez et al. [33]) A pattern P from P is well-designed (or wd-pattern,
for short) if for every occurrence i of an OPT-pattern P1 OPT P2 in P the variables
from vars(P2) \ vars(P1) occur in P only inside (the labels of) i.

We write Pwd for the fragment of wd-patterns. Such patterns comply with the basic
intuition for optional matching in SPARQL: “do not reject (solutions) because some
part of the query pattern does not match” [37]; indeed, our canonical use case (1) is

Theory Comput Syst (2018) 62:772–809 779

clearly well-designed. Evaluation of wd-patterns, that is, checking if μ ∈ �P �G for a
mapping μ, graph G and pattern P ∈ Pwd, is CONP-complete (in combined complex-
ity), as opposed to PSPACE-completeness for P [33, 38]. The high complexity of unre-
stricted patterns is partially due to the fact that unrestricted combinations of OPT and
FILTER allow to express nesting of the difference operator DIFFwith semantics �P1 DIFF
P2�G = �P1�G\�P2�G (unless P1 or P2 are empty basic patterns, see [21] for details):

P1 DIFF P2 ≡ (P1 OPT (P2 AND (?x, ?y, ?z))) FILTER ¬bound(?x), (5)

where ?x, ?y and ?z do not occur in vars(P1) ∪ vars(P2). This property is well-
known [2, 21, 33], and has been usually believed to be an important source of non-
well-designed patterns in practice. We challenge this belief by answering differently
the question on the prevalent structure of real-life queries beyond the well-designed
fragment. This question is not just of theoretical interest: as previous studies [34]
show (and our analysis confirms), about half of queries with OPT asked over DBpedia
are not well-designed.

Next we discuss two sources of non-well-designedness in patterns as revealed by
the example queries (2) and (3) in the introduction—one based on OPT and another
one on FILTER.

Source 1. There are two substantially different ways of nesting the OPT operator
in patterns:

P1 OPT (P2 OPT P3), (Opt-R)

(P1 OPT P2) OPT P3. (Opt-L)

Non-well-designed nesting of type (Opt-R) is responsible for the PSPACE-
hardness of query evaluation [33, 38]. Moreover, such nesting is not very intuitive
unless well-designed. On the contrary, as we saw in the introduction, non-well-
designed nesting of type (Opt-L) can be used for prioritising some parts of
patterns to others, and is indeed used in real life. As we will see later, nesting of
type (Opt-L) cannot lead to high complexity of evaluation.

Source 2. Well-designedness can be violated by using “dangerous” variables from
the right argument of OPT in filter constraints. In particular, patterns of the form
(P1 OPTP2) FILTERR with R using a variable from vars(P2) \ vars(P1) are
not well-designed, but rather frequent in practice. However, such patterns almost
never occur inside the right argument of other OPT-patterns. We will see that
if we restrict the usage of such filters to the “top level”, we preserve the good
computational properties of wd-patterns.

Motivated by these observations, we considerably generalise the notion of wd-
patterns to allow for useful queries like (2) and (3) while retaining important
properties of such patterns. We start with two auxiliary notions.

Definition 2 Given a pattern P , an occurrence i1 in P dominates an occurrence i2 if
there exists an occurrence j of an OPT-pattern such that i1 is inside the left argument
of j and i2 is inside the right argument.

780 Theory Comput Syst (2018) 62:772–809

Definition 3 An occurrence i of a FILTER-pattern P ′ FILTER R in P is top-level if there
is no occurrence j of an OPT-pattern such that i is inside the right argument of j .

We are ready to give the main definition of this paper.

Definition 4 A pattern P ∈ P is weakly well-designed (or wwd-pattern, for short)
if, for each occurrence i of an OPT-subpattern P1 OPT P2, the variables in vars(P2)\
vars(P1) appear outside i only in

– subpatterns whose occurrences are dominated by i, and
– constraints of top-level occurrences of FILTER-patterns.

We write Pwwd for the fragment of wwd-patterns. They extend wd-patterns
by allowing variables from the right argument of an OPT-subpattern that are not
“guarded” by the left argument to appear in certain positions outside of the subpat-
tern. Note that the patterns of queries (2) and (3) are wwd-patterns. Also, patterns
which allow only for OPT nesting of type (Opt-L) are always weakly well-designed,
same as the pattern on the right hand side of (5), which expresses DIFF. However,
patterns that have subpatterns of the atter form in the right argument of OPT are not
weakly well-designed. Next we give a few more examples.

Example 1 Consider the following patterns and their parse trees in Fig. 2 (we write
?x �= ?y for ¬(?x = ?y)):

((?x, a, a) OPT ((?x, b, ?y) OPT (?y, c, ?z))) OPT (?x, d, ?z), (6)

((?x, a, a) OPT (?x, d, ?z)) OPT ((?x, b, ?y) OPT (?y, c, ?z)), (7)

(((?u, f, ?v) OPT (?u, g, ?w)) FILTER ?v �= ?w) OPT (?u, h, ?s), (8)

(?u, h, ?s) OPT (((?u, f, ?v) OPT (?u, g, ?w)) FILTER ?v �= ?w). (9)

Pattern (6) is not well-designed because of variable ?z, but is weakly well-designed
since the occurrence of (?y, c, ?z) dominates (?x, d, ?z). However, the similar pattern
(7) is not weakly well-designed because the occurrence of the inner OPT-pattern with
the second occurrence of ?z does not dominate the first. Pattern (8) is weakly well-
designed since the FILTER-pattern (which is not dominated by the inner OPT-pattern)
is top-level, but pattern (9) is not, because of variable ?w in a non-top-level FILTER.

Proposition 1 Checking whether a UNION-free pattern P belongs to the frag-
ment Pwwd can be done in time O(|P |2), where |P | is the length of the string
representation of P .

Proof First note that a UNION-free pattern P is weakly well-designed if and only
if so is the pattern rm toplevel filters(P), which is obtained from P by removing all
top-level occurrences of filters. The operation rm toplevel filters can be implemented
in linear time by the recursive procedure in Fig. 3a.

Next consider the recursive procedure is wwd in Fig. 3b, where sort(S) denotes a
sorted, repetition-free list representation of a set S.

Theory Comput Syst (2018) 62:772–809 781

(a) (b)

(c) (d)

Fig. 2 (a)–(d) Parse trees for patterns (6)–(9) in Example 1, respectively; (crossed) dotted arrows
represent the relevant (non-)dominance relations between subpatterns

Given a UNION-free pattern P without top-level filters, it is easily seen that
is wwd(P) returns a tuple of the form (true, vs, ws) if and only if P is weakly well-
designed, where ws is the sorted list of “unguarded” variables in P , that is, variables

(a)

(b)

Fig. 3 Procedures (a) rm toplevel filters and (b) is wwd

782 Theory Comput Syst (2018) 62:772–809

occurring in the second argument of an OPT-subpattern P ′ of P but not in the first
argument of P ′, and vs = sort(vars(P))\ws. Procedure is wwd can be implemented
in quadratic time since sort (which may take time O(n log n)) is only applied to
atomic subexpressions and set operations on sorted lists take linear time.

4 OPT-FILTER-Normal Form and Constraint Pattern Trees

One of the key properties of wd-patterns is that they can always be converted
to a so-called OPT-normal form, in which all AND- and FILTER-subpatterns are
OPT-free [33]. Also, FILTER-free patterns in OPT-normal form can be naturally rep-
resented as trees of a special form [27, 35], which give a good intuition for the
evaluation and optimisation of such patterns. In this section, we show that these
notions can be generalised to wwd-patterns.

Definition 5 A pattern P ∈ P is in OPT-FILTER-normal form (or OF-normal form
for short) if it adheres to the grammar

P ::= F | (P FILTER R) | (P OPT S),

S ::= F | (S OPT S),

F ::= (B FILTER R),

where B ranges over basic patterns and R over filter constraints.

In other words, the parse tree of a pattern in OF-normal form can be stratified as
follows:

1. (occurrences of) basic patterns as the bottom layer,
2. a FILTER on top of each basic pattern as the middle layer,
3. a combination of OPT and FILTER as the top layer;

moreover, each occurrence of a FILTER-pattern in the top layer is top-level (accord-
ing to Definition 3). Note that our normal form is AND-free: all conjunctions are
expressed via basic patterns.

Example 2 None of the four patterns in Example 1 are in OF-normal form. However, the
first three of them can be easily normalised by replacing each triple t with t�, where
P � is an abbreviation of P FILTER� for a pattern P . Also, compare the pattern

(((?x, a, a)� OPT (?x, b, ?y)�) OPT ((?x, b, ?z)� OPT (?z, c, ?u)�))

FILTER ?u �= ?x,

(10)

which is in OF-normal form, with the very similar pattern

((?x, a, a)� OPT (?x, b, ?u)�) OPT

(((?x, b, ?z)� OPT (?z, c, ?u)�) FILTER ?u �= ?z),

which is not, because the outer FILTER is in the right argument of the outermost OPT.

Theory Comput Syst (2018) 62:772–809 783

As shown by Letelier et al. [27], FILTER-free patterns in OPT-normal form can be
represented by means of so-called pattern trees. We next show that this representation
can be naturally extended to patterns in OF-normal form.

Definition 6 Let P be a pattern in OF-normal form. The constraint pattern tree
(CPT) T (P) of P is the directed, ordered, labelled, rooted tree recursively con-
structed as follows (in this definition we abuse notation and confuse patterns and their
occurrences; strictly speaking, we create a fresh sub-tree for each occurrence, so the
resulting object is always a tree):

1. if B is a basic pattern then T (B FILTER R) is a single node v labelled by the pair
(B, R);

2. if P ′ is not a basic pattern then T (P ′ FILTER R) is obtained by adding a special
node labelled by R as the last child of the root of T (P ′);

3. T (P1 OPT P2) is the tree obtained from T (P1) and T (P2) by adding the root of
T (P2) as the last child of the root of T (P1).

By definition, there is a one-to-one correspondence between patterns in OF-
normal form and CPTs. Hence, such trees can be seen as a convenient representation
of patterns in OF-normal form. Unlike parse trees, which represent the syntactic
shape of patterns, CPTs show the semantic structure of OPT and FILTER nesting.
Figure 4 shows how OPT nestings of types (Opt-R) and (Opt-L) are represented
in both formats. Note that CPTs treat different FILTER-subpatterns differently: if the
filter is over a basic pattern, the constraint of the FILTER is paired with this pattern;
however, if the filter is over an OPT-subpattern, then the constraint is represented
by a separate special node. Moreover, since in the second case the FILTER-pattern
must be top-level, special nodes can only occur in CPTs as children of the root. For
instance, the CPT of the example pattern (10) is given in Fig. 5a.

Proposition 2 Let P be a pattern in OF-normal form. Then every special node in
T (P) is a child of the root.

Proof Let v be a special node in T (P). Then v is obtained from a subpattern
P ′ FILTER R where P ′ is not basic. Hence, by definition of the OF-normal form, P

must have the form

(. . . ((P ′ FILTER R) OPT S1) . . .) OPT Sn

(a) (b)

Fig. 4 Parse trees vs. constraint pattern trees for patterns (a) B1 OPT (B2 OPT B3) and (b) (B1 OPT B2)

OPT B3, with B1, B2, and B3 basic patterns

784 Theory Comput Syst (2018) 62:772–809

(a)

(b)

Fig. 5 Constraint pattern trees of (a) (((?x, a, a)� OPT (?x, b, ?y)�)OPT ((?x, b, ?z)� OPT (?z, c, ?u)�))

FILTER ?u �= ?x (i.e., pattern (10)) and (b) equivalent pattern in “flat” form (13)

(for some n ≥ 0) where S1, . . . , Sn contain only FILTER-subpatterns over basic
patterns. Thus, the root of T (P ′) is also the root of T (P), and the claim follows.

Next we show that each wwd-pattern can be converted to OF-normal form and
hence can be represented by a CPT. To prove this statement we make use of a num-
ber of equivalences. Formally, a pattern P1 is equivalent to a pattern P2 (written
P1 ≡ P2) if �P1�G = �P2�G holds for any graph G. There are several equivalences,
such as associativity and commutativity of AND, as well as filter decompositions,
such as P FILTER (R1 ∧ R2) ≡ (P FILTERR1) FILTERR2, which hold for all pat-
terns (see [38] for an extensive list). Moreover, the key equivalences used in [33] for
normalising wd-patterns can easily be adapted to serve our needs.

Proposition 3 Let P1, P2, P3 be patterns and R a filter constraint such that
vars(P2) ∩ vars(P3) ⊆ vars(P1) and vars(P2) ∩ vars(R) ⊆ vars(P1). Then the
following equivalences hold:

(P1 OPT P2) AND P3 ≡ (P1 AND P3) OPT P2,

(P1 OPT P2) FILTER R ≡ (P1 FILTER R) OPT P2.

Proof Both equivalences are essentially shown in [33]. While stated for well-
designed patterns, the proof only exploits the properties vars(P2) ∩ vars(P3) ⊆
vars(P1) and vars(P2) ∩ vars(R) ⊆ vars(P1), which are satisfied not only by
well-designed patterns, but also by weakly well-designed patterns.

Since all the equivalences preserve weak well-designedness, we obtain the desired
result.

Theory Comput Syst (2018) 62:772–809 785

Proposition 4 Each wwd-pattern P is equivalent to a wwd-pattern in OF-normal
form of size O(|P |).

Proof We call a pattern P pre-normal if it adheres to the grammar that is the same
as the one in Definition 5 except that the category F is extended as follows:

F ::= B | (F FILTERR) | (F ANDF).

Given a pattern P , let ||P || be the sum of the sizes of all AND-subpatterns and all
FILTER-subpatterns of P (where different occurrences of each pattern are counted
separately). Consider a wwd-pattern P that is not pre-normal. Then P contains a
subpattern P ′ of one of the following two forms (modulo commutativity of AND):
(P1 OPT P2) AND P3 and (P1 OPT P2) FILTER R with P ′ not top-level. In both
cases we can rewrite P to a pattern S not increasing | · | and strictly decreasing || · ||
as follows.

– Let P ′ = (P1 OPT P2) AND P3. Since P is weakly well-designed and
the occurrence of P3 is not dominated by the occurrence of P1 OPT P2,
we have vars(P3) ∩ vars(P2) ⊆ vars(P1). Therefore, using the first equiva-
lence in Proposition 3, we can rewrite P to a pattern S by replacing P ′ with
(P1 AND P3) OPT P2. Moreover, we have |P | = |S| and ||P || > ||S||.

– Let P ′ = (P1 OPT P2) FILTER R where the occurrence of P ′ is not top-level.
Since P is weakly well-designed, we then have vars(R) ∩ vars(P2) ⊆ vars(P1),
and thus, with the second equivalence in Proposition 3, we can rewrite P to
a pattern S by replacing P ′ with (P1 FILTER R) OPT P2. Moreover, we have
|P | = |S| and ||P || > ||S||.

Since this rewriting strictly decreases || · ||, its repeated application to P terminates
and yields a pre-normal pattern S equivalent to P with |S| = |P |.

Finally, S can be transformed to OF-normal form by replacing every occurrence
of an AND-FILTER combination of basic patterns by B FILTER R where B consists
of all triples in the basic patterns and R is a conjunction of all the filter conditions (if
there are no filters in the combination, then R is �). Clearly, this transformation is
equivalence-preserving and linear in |S|.

Relying on this proposition, in the rest of the paper we silently assume that all
wwd-patterns are in OF-normal form and hence can be represented by CPTs.

We next transfer the notion of weak well-designedness to CPTs. Given a pattern
P in OF-normal form, let ≺ be the strict topological sorting of the nodes in T (P)

computed by a depth first search traversal visiting the children of a node according
to their ordering (i.e., v ≺ u holds if v is visited before u).

Lemma 1 Let P be a pattern in OF-normal form and P ′ = P1 OPT P2 be a subpat-
tern of P . Then v ≺ w for every two nodes v, w in T (P) such that v is in the subtree
of T (P) corresponding to P1 and w is in the subtree corresponding to P2.

Proof The claim follows since T (P ′) is constructed by attaching T (P2) as the last
child to the root of T (P1).

786 Theory Comput Syst (2018) 62:772–809

In the following proposition, vars(u) for a node u of a CPT stands for the set of
all variables in the label of u.

Proposition 5 A pattern P in OF-normal form is weakly well-designed if and only
if, for each edge (v, u) with non-special u in the CPT T (P), every variable ?x ∈
vars(u) \ vars(v) occurs only in nodes w such that v ≺ w. The pattern is well-
designed if and only if for every variable ?x in P the set of all nodes v in T (P) with
?x ∈ vars(v) is connected.

Proof For the forward direction of the first statement, suppose P is weakly well-designed.
We proceed by induction on the structure of P and consider the following cases.

– Let P = B FILTER R where B is basic. Then the claim is vacuous.
– Let P = P1 FILTER R where P1 is not basic. By the inductive hypothesis, the

claim holds for T (P1). Moreover, T (P) differs from T (P1) only in the special
node labelled with R, and the claim follows by Proposition 2.

– Let P = P1 OPT P2. By the inductive hypothesis, the claim holds for T (P1) and
T (P2). Thus, by Lemma 1, it suffices to show that for every edge (v, u) in T (P2)

(with non-special u by definition), no variable ?x ∈ vars(u) \ vars(v) occurs in
T (P1). Suppose for contradiction that this property is violated for some (v, u) and ?x.
Then P2 has a subpattern P ′ = P ′

1 OPT P ′
2 such that T (P ′

1) is a subtree of T (P)

rooted at v and T (P ′
2) is the complete subtree of T (P) rooted at u. Moreover, ?x

occurs in P1, and thus outside P ′. Since all FILTER-subpatterns in P are safe, we
can assume without loss of generality that the occurrence of ?x in P1 is not in a
filter constraint. However, this contradicts the assumption that P is weakly well-
designed since the occurrence of ?x in P1 is not dominated by the occurrence of P ′.

For the backward direction of the first claim, suppose P is not a wwd-pattern.
Then P has a subpattern P ′ = P ′

1 OPT P ′
2, with v the root of T (P ′) in T (P) and

u the child of v corresponding to T (P ′
2), and a variable ?x ∈ vars(P ′

2) \ vars(P ′
1)

such that ?x ∈ vars(u) and, for some subpattern P1 OPT P2 of P , ?x occurs in P1
and P ′ occurs in P2. Since ?x ∈ vars(P ′

2) \ vars(P ′
1) and ?x ∈ vars(u), we have

?x ∈ vars(u) \ vars(v). Thus, by Lemma 1, we have v �≺ w, where w is a node in
T (P1) with an occurrence of ?x.

The second claim can be proved analogously.

Note that if a pattern is FILTER-free, its OF-normal form coincides with the OPT-
normal form in [33] (modulo tautological filters), and its CPT is the pattern tree
from [27, 35]. In fact, the second part of Proposition 5 generalises an observation
from [27] to the case with filters. An important difference to pattern trees is that in
our case the order of children of a node is semantically relevant since wwd-patterns
do not satisfy the equivalence

(P1 OPT P2) OPT P3 ≡ (P1 OPT P3) OPT P2. (11)

This equivalence, established in [32], holds whenever (vars(P2) ∩ vars(P3)) ⊆
vars(P1), which is always the case for wd-patterns but not for wwd-patterns, as can
be seen on query (2).

Theory Comput Syst (2018) 62:772–809 787

We conclude this section with a property that is unique to wwd-patterns: each
wwd-pattern is equivalent to a pattern whose corresponding CPT has depth one.

Definition 7 A pattern in P is in depth-one normal form if it has the structure

(· · · ((B op1 S1) op2 S2) · · ·) opn Sn, (12)

where B is a basic pattern and each opi Si , 1 ≤ i ≤ n, is either OPT (Bi FILTERRi)

with Bi a basic pattern and Ri a filter constraint, or just FILTERRi .

To show that each wwd-pattern can be brought to this form, we exploit the
following observation in [33].

Lemma 2 (Pérez et al. [33]) Let P be a pattern in P , G a graph, and μ1, μ2 two
mappings in �P �G. Then μ1 ∼ μ2 if and only if μ1 = μ2.

This lemma allows us to prove the following crucial equivalence.

Proposition 6 For patterns P1, P2 and P3 in P with vars(P1)∩ vars(P3) ⊆ vars(P2)

it holds that

P1 OPT (P2 OPT P3) ≡ (P1 OPT P2) OPT (P2 AND P3). (13)

Proof We first show that any solution to the left hand side is also a solution to the right
hand side. Let G be a graph and let μ ∈ �P1 OPT (P2 OPTP3)�G. We distinguish three
cases.

– Let μ ∈ �P1�G �� (�P2�G �� �P3�G). Then, by Lemma 2, we have �P2�G =
�P2�G �� �P2�G. Consequently, μ ∈ (�P1�G �� �P2�G) �� (�P2�G �� �P3�G),
and the claim follows.

– Let μ ∈ �P1�G �� (�P2�G \ �P3�G). Then μ = μ1 ∪ μ2 such that μ1 ∈ �P1�G,
μ2 ∈ �P2�G, and for every μ3 ∈ �P3�G, μ2 �∼ μ3. Since every mapping
in �P2 AND P3�G is an extension of some mapping in �P3�G, no mapping
in �P2 AND P3�G is compatible with μ2, and hence with μ. Therefore, μ ∈
(�P1�G �� �P2�G) \ �P2 AND P3�G, and the claim follows.

– Let μ ∈ �P1�G \ �P2 OPT P3�G. Then μ ∈ �P1�G and is incompatible with any
mapping in �P2 OPT P3�G. Moreover, since vars(P1) ∩ vars(P3) ⊆ vars(P2),
μ is incompatible with any mapping in �P2�G, and consequently also with any
mapping in �P2 AND P3�G. Therefore, μ ∈ (�P1�G \ �P2�G) \ �P2 AND P3�G,
and the claim follows.

For the other direction, suppose μ ∈ �(P1 OPTP2)OPT (P2 ANDP3)�G. We
distinguish three cases.

– Let μ ∈ (�P1�G �� �P2�G) �� (�P2�G �� �P3�G). Then, by Lemma 2, we have
μ ∈ �P1�G �� (�P2�G �� �P3�G), and the claim follows.

– Let μ ∈ (�P1�G �� �P2�G) \ (�P2�G �� �P3�G). Then μ = μ1 ∪ μ2 such that
μ1 ∈ �P1�G, μ2 ∈ �P2�G, and μ is incompatible with every mapping in �P2�G ��

�P3�G. Since vars(P1) ∩ vars(P3) ⊆ vars(P2), this implies that �P2�G �� �P3�G

788 Theory Comput Syst (2018) 62:772–809

is empty, that is, μ2 is incompatible with every mapping in �P3�G. Therefore,
μ2 ∈ �P2�G\�P3�G, and thus μ ∈ �P1�G �� (�P2�G\�P3�G). The claim follows.

– Let μ ∈ �P1�G \ �P2�G. Since every mapping in �P2 OPTP3�G extends a mapping
in �P2�G, we have that μ ∈ �P1�G \ �P2 OPTP3�G, and the claim follows.

Applied from left to right, equivalence (13) preserves weak well-designedness (but
not well-designedness). Each such application transforms a weakly well-designed
OPT nesting of type (Opt-R) to a nesting of type (Opt-L), decreasing the depth of
the CPT.

Corollary 1 Every wwd-pattern is equivalent to awwd-pattern in depth-one normal form.

For instance, pattern (10) is equivalent to the pattern

((((?x, a, a)� OPT (?x, b, ?y)�) OPT (?x, b, ?z)�) OPT

{(?x, b, ?z), (?z, c, ?u)}�) FILTER ?u �= ?x,

represented by the CPT in Fig. 5b. Such “flat” patterns are attractive in practice
because of their regular structure. However, “flattening” a pattern can incur an expo-
nential blow-up in size. Hence, in the rest of the paper we consider arbitrary wwd-
patterns in OF-normal form rather than restricting our attention to depth-one-normal
patterns.

5 Evaluation of wwd-Patterns

In this section, we look at the query answering problem for wwd-patterns and their exten-
sions with union and projection. We show that in all three cases, complexity remains the
same as for wd-patterns. To obtain these results, we develop several new techniques.

Formally, we look at the following decision problem for a given SPARQL
fragment L.

EVAL()
Input: Graph G , query , and mapping
Question: Does belong to G?

It is known that EVAL(U) for general patterns U is PSPACE-complete [33], and the
result easily propagates to queries with projection (i.e., S) [27]. For wd-patterns, the
evaluation problem is CONP-complete, and can be solved by exploiting the following
idea of [27].

Suppose we are given a wd-pattern P in OPT-normal form (for simplicity, assume
that P is FILTER-free), a graph G, and a mapping μ. First, we look for a subtree of
T (P) that includes the root of T (P), contains precisely the variables in domμ, and
“matches” G under μ (i.e., images of all its triples under μ are contained in G). This
is doable in polynomial time. If such a subtree does not exist, then μ cannot be a
solution. Otherwise, the subtree witnesses that μ is a part of a solution to P . Finally,
to verify that μ is a complete solution, we need to check that the subtree is maximal,

Theory Comput Syst (2018) 62:772–809 789

that is, cannot be extended to any more nodes in T (P) with a match in G. There are
linearly many such nodes to check, and each check can be performed in CONP. So,
the overall algorithm runs in CONP.

Inspired by this idea, we next show that the low evaluation complexity of wd-
patterns transfers to wwd-patterns by developing a CONP algorithm for EVAL(Pwwd).

Let P be a wwd-pattern in OF-normal form. An r-subtree of T (P) is a subtree
containing the root of T (P) and all its special children. Every r-subtree T (P ′) of
T (P) is also a CPT representing a wwd-pattern P ′ that can be obtained from P

by dropping the right arguments of some OPT-subpatterns (a transformation known
from [33]). A child of an r-subtree T (P ′) of T (P) is a node in T (P) that is not
contained in T (P ′) but whose parent is.

Definition 8 A mapping μ is a potential partial solution (or pp-solution for short)
to a wwd-pattern P over a graph G if there is an r-subtree T (P ′) of T (P) such that
dom(μ) = vars(P ′), μ(triples(P ′)) ⊆ G, and μ |= R for the constraint R of each
ordinary node in T (P ′).

A pp-solution μ to P over G can be witnessed by several r-subtrees. However,
the union of such r-subtrees is also a witness. Hence, there exists a unique maximal
witnessing r-subtree, denoted T (Pμ), with Pμ being the corresponding wwd-pattern.

Potential partial solutions generalise “partial solutions” as defined in [33] for wd-
patterns. There, every “partial solution” is either a solution or can be extended to one.
This is not the case for wwd-patterns. While every solution is clearly a pp-solution,
not every pp-solution can be extended to a real one. Real solutions may not just
extend pp-solutions by assigning previously undefined variables but can also override
variable bindings established in some node v of T (Pμ) by extending to a child of
T (Pμ) that precedes v according to the order ≺.

An additional complication is the presence of non-well-designed top-level filters.
Note that pp-solutions are only required to satisfy the constraints of ordinary nodes in
the corresponding CPT, thus ignoring top-level filters. Indeed, requiring pp-solutions
to satisfy constraints of top-level filters would be too strong since real solutions do
not generally satisfy this property, as demonstrated by the following example.

Example 3 Consider the graph G = {(1, a, 1), (3, a, 3)} and wwd-pattern

P = (((?x, a, 1) OPT (?y, a, 2)) FILTER¬bound(?y)) OPT (?y, a, 3).

The mapping μ = {?x �→ 1, ?y �→ 3} is a solution to P over G, but μ �|=
¬bound(?y).

We now present a characterisation of solutions for wwd-patterns in terms of pp-
solutions that (a) takes into account that not every pp-solution can be extended to a
real solution and (b) ensures correct treatment of non-well-designed top-level filters.
For this we need some more notation. Given a wwd-pattern P , a node v in T (P), a
graph G, and a pp-solution μ to P over G, let μ|v be the projection μ|X of μ to the set
X of all variables appearing in nodes u of T (Pμ) such that u ≺ v. A mapping μ1 is

790 Theory Comput Syst (2018) 62:772–809

subsumed by a mapping μ2 (written μ1 � μ2) if μ1 ∼ μ2 and dom(μ1) ⊆ dom(μ2)

(this notion is from [5, 33]).
Intuitively, a pp-solution μ needs to satisfy two conditions to be a real solution to a

wwd-pattern P . First, μ|v (as opposed to μ for wd-patterns) must be non-extendable
to v for any child v of T (Pμ). Indeed, if such an extension exists, then it is either
possible to provide bindings for some variables that are undefined in μ, or some
variables from dom(μ) can be assigned different values of higher “priority” than the
corresponding values in μ. Second, every top-level filter R labelling a node s needs
to be satisfied by μ|s , which is precisely the part of μ bound by the subpattern of
P that is paired with R in the FILTER-pattern. The following lemma formalises this
intuition.

Lemma 3 A mapping μ is a solution to a wwd-pattern P over a graph G if and only if

1. μ is a pp-solution to P over G;
2. for every child v of T (Pμ) labelled with (B, R) there is no μ′ such that μ|v �

μ′, μ′ |= R, and μ′(B) ⊆ G;
3. μ|s |= R for every special node s in T (P) labelled with R.

Proof In this proof we write Tv for the complete subtree of a CPT T rooted at a node
v (i.e., the subtree over all the descendants of v including v itself) and T≺v for the
subtree of T consisting of all nodes u such that u ≺ v.

For the forward direction, suppose μ is a solution to P over G. Clearly, μ is a
pp-solution to P over G, so it suffices to show that conditions 2 and 3 hold.

For condition 2, assume for contradiction that v is a child of T (Pμ) labelled with
(B, R) and μ′ a mapping such that μ|v � μ′, μ′ |= R, and μ′(B) ⊆ G. Moreover,
without loss of generality, let dom(μ′) = dom(μ) ∪ vars(B). Let u be the parent of
v in T (P), and let T be the largest subtree of T (P) that is rooted at u and has v as
the last child of u. Then . Moreover, since u is contained in
T (Pμ), there is a mapping μ1 � μ such that μ1 ∈ �T �G. Since v is not contained
in T (Pμ), we have μ1 � μ|v and, since T (Pμ) is the largest r-subtree witnessing
μ, μ1 is not compatible with any mapping in �Tv�G. On the other hand, μ′ satis-
fies the label of v, and thus, since Tv contains no top-level filters, μ′|vars(v) can be
extended to a mapping of μ′′ ∈ �Tv�G. Moreover, since P is weakly well-designed,
vars(Tv) ∩ dom(μ|v) ⊆ vars(v), and hence dom(μ′′) ∩ dom(μ1) ⊆ dom(μ′). Thus,
since μ|v is compatible with μ′, μ1 is compatible with μ′′, in contradiction to the
above observation that μ1 is not compatible with any mapping in �Tv�G.

For condition 3, let s be a special node in T (P) labelled with R. Since μ is a
solution to P , there is some μ1 ⊆ μ such that μ1 ∈ �T (P)≺s�G and μ1 |= R. Hence,
it suffices to show that μ1 = μ|s . Clearly, μ1 ⊆ μ|s (as μ|s is the largest mapping
compatible with μ that can occur in �T (P)≺s�G), so assume for contradiction that
there is a variable ?x ∈ dom(μ|s) \ dom(μ1). Then there is a node in T (Pμ|s) ∩
T (P)≺s that does not occur in T (Pμ1) ∩ T (P)≺s . This yields a contradiction with
μ1 ∈ �T (P)≺s�G analogously to the case of condition 2.

For the backward direction, suppose that μ satisfies conditions 1–3. We show that
μ ∈ �P �G by induction on the depth of T (Pμ), that is, the maximal number of edges
between the root and a leaf.

Theory Comput Syst (2018) 62:772–809 791

For the basis of the induction, let the depth of T (Pμ) be 0, that is, the root v of
T (P) be the only node of T (Pμ). We prove the claim by induction on the number n

of children of v in T (P). If n = 0, then P = B FILTER R for some basic pattern B

and filter constraint R, and the claim follows since μ is a pp-solution to P over G.
For the inductive step, suppose the claim holds for all wwd-patterns P ′ and mappings
μ′ satisfying 1–3 provided T (P ′

μ′) has depth 0 and n − 1 children in T (P ′). Let P

and μ be such that T (Pμ) has depth 0 and n children in T (P). Let u be the last
child of (the root v of) T (Pμ). Then μ|u is a pp-solution to T (P)≺u that satisfies
conditions 2 and 3 since (μ|u)|w = μ|w for every w ≺ u. Hence, by the inductive
hypothesis for the pattern corresponding to T (P)≺u and the mapping μ|u, we have
μ|u ∈ �T (P)≺u�G. We distinguish two cases.

– Let u be a special node labelled with R. Then it suffices to show that μ|u |= R,
which is immediate since μ|u satisfies condition 3.

– Let u be an ordinary node labelled with (B, R). We know that u is not in T (Pμ).
Since v is in T (Pμ), by condition 2 there is no mapping μ′ such that (a) μ|u � μ′,
(b) μ′ |= R, and (c) μ′(B) ⊆ G. Since R is safe, it follows that every mapping
satisfying (b) and (c) is incompatible with μ|u. Consequently, every mapping
in �T (P)u�G is incompatible with μ|u, and hence μ = μ|u ∈ �T (P)≺u�G \
�T (P)u�G, as required.

For the outer inductive step, let the claim hold for all P ′ and μ′ with T (P ′
μ′) of

depth d −1, for some d > 0. Once again, we show the claim for P and μ with T (Pμ)

of depth d by induction on the number n of children of the root v of T (P). The basis
is vacuous as v cannot have 0 children while T (Pμ) has positive depth. The inductive
step is the same as for depth 0, except that we have an additional case for the last
child u of the root v.

– Let u be an ordinary node labelled with (B ′, R′) that is contained in T (Pμ).
Then μ = μ|u ∪ μ2 where μ2 is the projection of μ to the set of variables
occurring in the subtree T of T (Pμ) rooted at u (i.e., T = T (Pμ)u). Since
u is contained in T (Pμ) and contains no special children, μ2 is a pp-solution
to (the subpattern represented by) T (P)u. Moreover, μ2 satisfies condition 3
with respect to T (P)u since T (P)u contains no special nodes. We next show
that μ2 satisfies condition 2 with respect to T (P)u. Let w be a child of T (in
T (P)u) labelled with (B, R), and assume for contradiction that there is some
μ′ such that μ2|w � μ′, μ′ |= R, and μ′(B) ⊆ G. Without loss of gener-
ality, dom(μ′) = dom(μ2) ∪ vars(B). Thus, since P is weakly well-designed,
vars(B) ∩ dom(μ|u) ⊆ vars(B ′) ⊆ dom(μ2). Hence, μ′ is compatible with μ|u,
and μ|w � μ|u ∪ μ′. Moreover, since μ′ and μ|u ∪ μ′ coincide on vars(B)

and R is safe, we have that μ|u ∪ μ′ |= R and (μ|u ∪ μ′)(B) ⊆ G, contra-
dicting the assumption for μ. Since μ2 satisfies conditions 1–3 with respect to
T (P)u, by the outer inductive hypothesis we obtain that μ2 ∈ �T (P)u�G, and
hence μ ∈ �T (P)≺u�G �� �T (P)u�G (as μ|u ∈ �T (P)≺u�G holds by the inner
inductive hypothesis). The claim follows.

792 Theory Comput Syst (2018) 62:772–809

Checking whether a mapping μ satisfies this characterisation is feasible in CONP,
and the matching lower bound follows from the CONP-hardness of evaluation of
wd-patterns [33].

Theorem 1 Problem EVAL(Pwwd) is CONP-complete.

Proof The lower bound of this statement is known from [33], and the upper bound
can be obtained from Lemma 3 as follows.

First we show that testing whether μ is a pp-solution takes polynomial time, same
as computing the maximal witnessing tree T (Pμ). We just proceed from the root of
the tree down along the branches until we cannot find a match μ(triples(v)) in G for
the basic pattern in the child v which satisfies the condition in the node, and then
check that the variables in the resulting tree are exactly vars(μ). So, the crucial part
is to check that T (Pμ) is not extendable to any of its children. But there are only
linearly many children, and each check can be done in CONP. Finally, the checks for
top-level filters are again polynomial.

Pérez et al. [33] extended wd-patterns to UNION by considering unions of wd-
patterns, that is, patterns of the form P1 UNION . . . UNION Pn with all Pi ∈ Pwd. We
denote the resulting fragment by Uwd. This syntactic restriction on the use of UNION
in Uwd is motivated by the fact that any pattern in U can be equivalently expressed
as a union of UNION-free patterns [33]. We denote the fragment of all queries over
patterns in Uwd by Swd. Similarly, we write Uwwd for unions of wwd-patterns and
Swwd for queries over unions of wwd-patterns.

Analogously to the well-designed case, Theorem 1 extends to fragments Uwwd and
Swwd.

Corollary 2 Problem EVAL(Uwwd) is CONP-complete, and EVAL(Swwd) is �
p

2 -
complete.

The CONP-algorithm for Uwwd is obtained simply by applying the algorithm for
Pwwd to each pattern in the union. Hardness for Swwd follows from the hardness of
the well-designed case [27], while for membership we just guess the values of the
existential variables and then call a CONP-oracle for Uwwd on the resulting mapping
and the normalised body of the query.

Hence, the complexity of evaluation for wwd-patterns is the same as for wd-
patterns. We next show that wwd-patterns are, in a certain sense, a maximal
extension of wd-patterns that preserves CONP evaluation complexity (under the usual
complexity-theoretic assumptions).

The definition of weakly well-designed patterns suggests two intuitive ways in
which it could be relaxed. Given an occurrence i of an OPT-subpattern P1 OPTP2,
one could allow variables in vars(P2) \ vars(P1) to occur in

– some subpatterns whose occurrences are not dominated by i, or
– constraints of some non-top-level occurrences of FILTER-patterns.

Theory Comput Syst (2018) 62:772–809 793

We next show that either relaxation immediately makes the evaluation problem �
p

2 -
hard.

For the first relaxation, the arguably simplest special case would be to allow for
some non-well-designed OPT-nesting of type (Opt-R). Consider the fragment Popt-r
of patterns of the form B1 OPT (B2 OPT B3), where B1, B2 and B3 are basic patterns.
Intuitively, Popt-r allows for the most simple form of non-well-designed nesting of
type (Opt-R).

Theorem 2 Problem EVAL(Popt-r) is �
p

2 -complete.

Proof This theorem is a corollary of [38, Theorem 4] for their class E≤3, but without
UNION.

Now suppose we allow for some non-well-designed non-top-level filters, as sug-
gested by the second relaxation. As we will see next, even a very restricted fragment
of patterns allowing for such filters is �

p

2 -complete. This implies that the require-
ment that special nodes be children of the root, while it may look somewhat ad-hoc,
cannot be substantially relaxed. Consider the fragment Pfilter-2 of patterns of the
form

B1 OPT ((B2 OPT B3) FILTER R),

where B1, B2 and B3 are basic patterns such that vars(B3) ∩ vars(B1) ⊆ vars(B2),
and R is a filter constraint. Intuitively, Pfilter-2 allows for the simplest form of
“second-level” filters.

Theorem 3 Problem EVAL(Pfilter-2) is �
p

2 -complete.

Proof This problem allows for a reduction from a restriction of EVAL(Popt-r). Indeed,
from the proof of [38, Theorem 4] it follows that it is already �

p

2 -hard to check
whether μ ∈ �P �G for P of the form B1 OPT (B2 OPT B3) with dom(μ) = vars(B1)

and vars(B2) \ vars(B1) �= ∅. Let P and μ be such a pattern and such a mapping,
respectively. Consider the pattern

P ′ = B1 OPT (((B2 ∪ B1) OPT B ′
3)FILTER R), where

R = ¬bound(?x′
1) ∨ ((?x′

1 = ?x1) ∧ · · · ∧ (?x′
n = ?xn)),

with B ′
3 a basic pattern obtained from B3 by replacing all the variables ?x1, . . . , ?xn

in (vars(B3) ∩ vars(B1)) \ vars(B2) by their fresh copies ?x′
1, . . . , ?x′

n (if no such
variables exist, that is, if the original pattern is well-designed, we just set R to �).
Clearly, P ′ ∈ Pfilter-2, so it suffices to show, for every G and μ with dom(μ) =
vars(B1), that μ ∈ �P �G if and only if μ ∈ �P ′�G.

For the forward direction, suppose dom(μ) = vars(B1) and μ ∈ �P �G. Since
vars(B2) \ vars(B1) �= ∅, we must have μ ∈ �B1�G \ �B2 OPT B3�G. Thus,
μ ∈ �B1�G and for every μ′ ∈ �B2 OPTB3�G we have μ �∼ μ′. Since μ ∈
�B1�G, to show μ ∈ �P ′�G it suffices to verify that μ is not compatible with any

794 Theory Comput Syst (2018) 62:772–809

μ′ ∈ �((B2 ∪ B1) OPT B ′
3) FILTER R�G, for which we distinguish the following two

cases.

– If μ′ ∈ �B2 ∪ B1�G �� �B ′
3�G, then μ′ |= (?x′

1 = ?x1) ∧ · · · ∧ (?x′
n = ?xn).

Hence, μ′|vars(B2)∪vars(B3) ∈ �B2 OPT B3�G. Consequently, by assumption, μ �∼
μ′|vars(B2)∪vars(B3), and thus μ �∼ μ′.

– If μ′ ∈ �B2 ∪ B1�G\�B ′
3�G, then μ′|vars(B2) ∈ �B2�G\�B ′

3�G = �B2�G\�B3�G ⊆
�B2 OPT B3�G. Therefore, by assumption, μ �∼ μ′|vars(B2), and hence μ �∼ μ′.

For the backward direction, suppose dom(μ) = vars(B1) and μ ∈ �P ′�G. Again,
since vars(B2) \ vars(B1) �= ∅, we have μ ∈ �B1�G \ �((B2 ∪ B1) OPT B ′

3)

FILTER R�G. Thus, μ ∈ �B1�G and μ �∼ μ′ for every μ′ ∈ �((B2 ∪ B1) OPT B ′
3)

FILTER R�G. Since μ ∈ �B1�G, it follows that �((B2 ∪ B1) OPT B ′
3) FILTER R�G =

∅. To show μ ∈ �P �G it suffices to verify that μ is not compatible with any
μ′ ∈ �B2 OPTB3�G. Assume for the sake of contradiction that this is not the case
and there is a compatible μ′. We distinguish the following two cases.

– Suppose μ′ ∈ �B2�G �� �B3�G. Then there is some μ′′ such that μ ∪ μ′ ∪ μ′′ ∈
�B1�G �� �B2�G �� �B ′

3�G and μ ∪ μ′ ∪ μ′′ |= (?x′
1 = ?x1) ∧ · · · ∧ (?x′

n = ?xn).
Thus, μ∪μ′∪μ′′ ∈ �((B2 ∪ B1) OPT B ′

3) FILTER R�G, which is a contradiction.
– Suppose μ′ ∈ �B2�G \ �B3�G = �B2�G \ �B ′

3�G. Then μ ∪ μ′ ∈
�B1�G ∪ B2 \ �B ′

3�G and μ ∪ μ′ |= ¬bound(?x′
1), and hence μ ∪ μ′ ∈

�((B2 ∪ B1) OPT B ′
3) FILTER R�G, which is again a contradiction.

Theorems 2 and 3 suggest that Pwwd is a maximal fragment of P that does not
impose structural restrictions on basic patterns or filter constraints and has a CONP
evaluation algorithm (assuming CONP �= �

p

2). Hence, going beyond wwd-patterns
while preserving good computational properties requires more refined restrictions,
possibly in the spirit of [27, Section 4].

6 Expressivity of wwd-Patterns and Their Extensions

In this section, we analyse the expressive power of our fragments.

Definition 9 A language L1 is strictly less expressive than a language L2 (written
L1 < L2) if for every query Q1 in L1 there is a query Q2 in L2 such that Q1 ≡ Q2,
and there is a query Q2 in L2 such that Q1 �≡ Q2 for every query Q1 in L1.

We begin with UNION-free patterns, establishing thatPwd < Pwwd < P , and then pro-
ceed to unions, showing that Uwd < Uwwd < U , and queries, showing that Swd <

Swwd < S.
Following [5, 33], a set of mappings �1 is subsumed by a set of mappings �2

(written �1 � �2) if for every μ1 ∈ �1 there exists a mapping μ2 ∈ �2 such that
μ1 � μ2. A query Q is weakly monotone if �Q�G1 � �Q�G2 for any two graphs
G1 and G2 with G1 ⊆ G2, and a fragment L is weakly monotone if it contains only

Theory Comput Syst (2018) 62:772–809 795

weakly monotone queries. Arenas and Pérez [5] showed that, unlike P , the fragment
Pwd is weakly monotone, and hence Pwd < P .

Example 4 (Pérez et al. [33]) Consider the non-well-designed pattern

P = (?x, a, 1) OPT ((?y, a, 2) OPT (?x, a, 3))

as well as graphs G1 = {(1, a, 1), (2, a, 2)} and G2 = G1 ∪ {(3, a, 3)}. Then μ1 =
{?x �→ 1, ?y �→ 2} is the only mapping in �P �G1 while μ2 = {?x �→ 1} is the only
mapping in �P �G2 . Hence �P �G1 �� �P �G2 , meaning that P is not weakly monotone.

Analogously, we show that Pwd < Pwwd by observing that Pwwd is not weakly
monotone.

Proposition 7 Fragment Pwwd is not weakly monotone.

Proof Consider a wwd-pattern

P = ((?x, a, 1) OPT (?y, a, 2)) OPT (?y, a, 3),

as well as graphs G1 = {(1, a, 1), (3, a, 3)} and G2 = G1 ∪ {(2, a, 2)}. Then
�P �G1 = {{?x �→ 1, ?y �→ 3}} �� {{?x �→ 1, ?y �→ 2}} = �P �G2 .

An alternative proof of Pwd < Pwwd can be obtained by adapting Theorem 3.5
in [6], which exhibits a weakly well-designed, weakly monotone pattern that is not
equivalent to any well-designed pattern.

To distinguish Pwwd from P we need a different property.

Definition 10 A query Q is non-reducing if for any two graphs G1, G2 such that
G1 ⊆ G2 and any mapping μ1 ∈ �Q�G1 there is no μ2 ∈ �Q�G2 such that μ2 �
μ1 (i.e., μ2 � μ1 and μ2 �= μ1). A fragment is non-reducing if it contains only
non-reducing queries.

Intuitively, for a non-reducing query extending a graph cannot result in a previ-
ously bound answer variable becoming unbound. All weakly monotone queries are
non-reducing but not vice versa. Moreover, all wwd-patterns are non-reducing.

Proposition 8 Fragment Pwwd is non-reducing.

Proof Let P ∈ Pwwd and let G1, G2 be two graphs such that G1 ⊆ G2. We show
that μ2 �� μ1 for any μ1 ∈ �P �G1 and μ2 ∈ �P �G2 by induction on the structure of
P , proving, in parallel, that if all filters in P are over basic patterns, then for every
mapping μ1 ∈ �P �G1 there is a mapping μ2 ∈ �P �G2 such that μ1|vars(v) = μ2|vars(v)

for v the root of T (P).
For the base case, suppose P = B FILTERR for some basic pattern B and filter con-

straint R. Then, P is monotone in the sense of [5], that is, satisfies �P �G1 ⊆ �P �G2 .
Moreover, P contains no OPT, and hence every two distinct mappings in �P �G2 have
the same domain and are thus incompatible. These facts imply both claims.

796 Theory Comput Syst (2018) 62:772–809

For the inductive step, suppose first that P = P1 OPT P2 and both claims hold for
P1 and P2. Let μ1 ∈ �P �G1 . We first prove that μ2 �� μ1 for any μ2 ∈ �P �G2 . We
distinguish two cases.

– Let μ1 = μ1
1∪μ2

1 where μi
1 ∈ �Pi�G1 . Assume for contradiction that μ2 � μ1

for some μ2 ∈ �P �G2 . We begin by showing that μ2 must be of the form μ1
2∪μ2

2
where μi

2 ∈ �Pi�G2 , for which it suffices to show that μ2|vars(P1) is compatible
with some mapping in �P2�G2 . On the one hand, since μ2 � μ1, μ2

1 is compatible
with μ2|vars(P1). On the other hand, since all filters in P2 are over basic patterns,
the inductive hypothesis tells us that �P2�G2 contains a mapping μ′ that coincides
with μ2

1 on the set of variables X in the root of T (P2); moreover, since P is
weakly well-designed, dom(μ′) ∩ vars(P1) ⊆ X, and hence μ′ is compatible
with μ2|vars(P1). Thus, μ2 = μ1

2∪μ2
2 where μi

2 ∈ �Pi�G2 . Then, however, we
must have that μ1

2� μ1
1 or μ2

2� μ2
1, contradicting the inductive hypothesis for P1

or P2, respectively.
– Let μ1 ∈ �P1�G1 \ �P2�G1 , and let μ2 be an arbitrary mapping in �P �G2 . Then

μ2 extends some μ′ ∈ �P1�G2 . By the inductive hypothesis for claim 2, we have
that μ′ �� μ1, and hence μ2 �� μ1.

Suppose now that all filters in P are over basic patterns. We need to prove that there is
μ2 ∈ �P �G2 such that μ1|vars(v) = μ2|vars(v). We know that μ1 extends some μ′

1 ∈
�P1�G1 . Thus, by the inductive hypothesis, there is some μ′

2 ∈ �P1�G2 that coincides
with μ′

1 on the variables in the root of T (P1). The claim follows since μ′
2 can be

extended to a mapping μ2 for P that coincides with μ′
2 on the variables in the root of

T (P1), and, by construction, the root of T (P1) and the root of T (P) have the same label.
Consider now the inductive step for the case when P = P1 FILTER R. Since P1

is not a basic pattern, we only need to show that μ2 �� μ1 for any μ1 ∈ �P �G1

and μ2 ∈ �P �G2 . This holds by the inductive hypothesis, because μ1 ∈ �P1�G1 and
μ2 ∈ �P1�G2 for any such μ1 and μ2.

In contrast to Proposition 8, patterns in P do not generally satisfy non-reducibility.
For instance, consider again pattern P , graphs G1, G2, and mappings μ1, μ2 from
Example 4. Pattern P is not non-reducing since μ1 ∈ �P �G1 and μ2 ∈ �P �G2 but
μ2 � μ1. Therefore, we have the following theorem.

Theorem 4 It holds that Pwd < Pwwd < P .

We next compare Uwwd to Uwd and U , as well as Swwd to Swd and S (note that
neither UNION nor projection via SELECT can be expressed by means of the other
operators [40], so adding either construct makes each fragment strictly more expres-
sive). It is easily seen that Uwd and Swd inherit weak monotonicity from Pwd [27,
33], and hence Uwd < Uwwd and Swd < Swwd. Non-reducibility, however, does not
propagate to unions.

Example 5 Consider the following Uwd-pattern with G1, G2 and μ1, μ2 from Example 4:

P = ((?x, a, 1) OPT (?y, a, 2)) UNION (?x, a, 1).

Theory Comput Syst (2018) 62:772–809 797

We have μ1 ∈ �P �G1 and μ2 ∈ �P �G2 but μ2 � μ1, which is due to the fact that μ2
is already contained in �P �G1 along with μ1. This is only possible in the presence
of UNION since all mappings in the evaluation of a UNION-free pattern are mutually
non-subsuming (see Lemma 2).

Thus, to account for UNION, we introduce the following, more delicate property.

Definition 11 A query Q is extension-witnessing (e-witnessing) if for any two graphs G1
⊆G2 and mappingμ∈�Q�G2 such that μ /∈�Q�G1 there is a triple t in Q such that vars(t)
⊆ dom(μ) and μ(t) ∈ G2 \G1. A fragment is e-witnessing if so are all of its queries.

Informally, a query Q is e-witnessing if whenever an extension of a graph leads
to a new answer, this answer is justified by a triple pattern in Q which maps to the
extension. Unions of wwd-patterns can be shown e-witnessing.

Proposition 9 Fragment Uwwd is e-witnessing.

Proof Let P ∈ Uwwd and let G1, G2 be graphs such that G1 ⊆ G2. Let μ be a mapping
in �P �G2 but not in �P �G1 . We show that there is some t ∈ triples(P) such that μ(t) ∈
G2 \ G1.

Since P is a union of wwd-patterns, there is some wwd-pattern P ′ in the union
such that μ ∈ �P ′�G2 . It suffices to show μ(triples(P ′

μ)) ∩ (G2 \ G1) �= ∅, where P ′
μ

is the pattern corresponding to the maximal r-subtree of P witnessing μ in G2 (i.e.,
the part of P in the image of μ, see Definition 8). We know that μ(triples(P ′

μ)) ⊆ G2.
Assume, for contradiction, that μ(triples(P ′

μ)) ⊆ G1. Then μ is a pp-solution to P ′
over G1. We next show that μ is a real solution to P ′ over G1. By Lemma 3, it
suffices to show that (a) for any child u of T (P ′

μ) labelled with (B, R), there is no
mapping μ′ such that μ|u � μ′, μ′ |= R, and μ′(B) ⊆ G1, and (b) μ|s |= R for
any special node s in T (P ′) labelled with R. Claim (a) holds since μ ∈ �P ′�G2 and
G1 ⊆ G2 while (b) holds since μ ∈ �P ′�G2 and the claim does not depend on the
graph over which the evaluation is computed. Consequently, μ ∈ �P ′�G1 , and hence
μ ∈ �P �G1 , in contradiction to the assumption.

On the other hand, U is not e-witnessing, as can be seen on the pattern and graphs
in Example 4. Hence, we obtain the following theorem.

Theorem 5 It holds that Uwd < Uwwd < U .

Next we move to the fragments that allow for projection. As already mentioned,
we have Swd < Swwd since Swd is weakly monotone while Swwd is not. However,
Swwd is not e-witnessing, so we cannot apply the technique of Theorem 5 to establish
Swwd < S; instead, we make use of the following lemma.

Lemma 4 Let Q be a query in Swwd and G be a graph. For every graph G1 with
G ⊆ G1 and every μ ∈ �Q�G1 , there is a graph G2 with G ⊆ G2 such that μ ∈
�Q�G2 and |G2| ≤ |G| + |triples(Q)|.

798 Theory Comput Syst (2018) 62:772–809

Proof Let Q = SELECT X WHERE P , for P a union of wwd-patterns, and let G,
G1 and μ be as required. Then there is a wwd-pattern P ′ in the union P such that
μ′ ∈ �P ′�G1 for some μ′ with μ′|X = μ. Let G2 = G ∪ μ′(triples(P ′

μ′)). Clearly,
|G2| ≤ |G| + |triples(Q)|, so it suffices to show that μ′ ∈ �P ′�G2 .

By construction, μ′ is a pp-solution to P ′ over G2. Moreover, since μ′ is a solution
to P ′ over G1, we have that μ|s |= R for every special node s in T (P ′) labelled
with R. Finally, suppose for contradiction that there is a child v of T (P ′

μ′) labelled
with (B, R) and a mapping μ′′ such that μ′|v � μ′′, μ′′ |= R, and μ′′(B) ⊆ G2.
However, since G2 ⊆ G1, we then have μ′′(B) ⊆ G1, which contradicts the fact that
μ′ ∈ �P ′�G1 .

This lemma is the base of the last result of the section.

Theorem 6 It holds that Swd < Swwd < S.

Proof As observed before, the inclusion Swd < Swwd holds since Swd is weakly mono-
tone [27, 33] and Swwd is not.

As for the second inclusion, consider the family of graphs

Gn = {(a, a, a), (d1, b, b), . . . , (dn, b, b), (d1, c, c)},
for pairwise distinct IRIs a, b, c, d1, . . . , dn, and the query

Q = SELECT {?x, ?y} WHERE (?x, a, a) DIFF ((?y, b, b) DIFF (?y, c, c)).

By equivalence (5) in Section 3, the operator DIFF can be expressed via OPT, AND
and FILTER, so we can assume that Q ∈ S. On the other hand, it is easily seen that
Q /∈ Swwd. The mapping μ = {?x �→ a} is an answer to Q over G1 but not an
answer over any Gn with n ≥ 2. Moreover, it is easily seen that any extension G

of Gn such that μ ∈ �Q�G requires the addition of at least n − 1 triples, namely
{(d2, c, c), . . . , (dn, c, c)}. Consequently, μ ∈ �Q�G implies |G| ≥ |G1| + n − 1.

Suppose for contradiction there is a query Q′ in Swwd such that Q′ ≡ Q. Let
n = |triples(Q′)| + 2. Then, by Lemma 4, μ ∈ �Q′�G for some G with |G| ≤
|Gn|+|triples(Q′)| = |Gn|+n−2, which contradicts the above observation for Q.

7 Static Analysis of wwd-Patterns

In this section, we look at the general static analysis problems of query equivalence
and containment. Formally, equivalence for a language L is defined as follows.

EQUIVALENCE()
Input: Queries and in
Question: Is ?

This problem is commonly generalised to CONTAINMENT(L), in which one
checks whether Q is contained in Q′, written Q ⊆ Q′, that is, whether �Q�G ⊆

Theory Comput Syst (2018) 62:772–809 799

�Q′�G holds for every graph G. We have Q ≡ Q′ if and only if Q and Q′ contain
each other.

These problems have been studied for FILTER-free wd-patterns in [27, 35], estab-
lishing NP-completeness of equivalence and containment. Moreover, both problems
are �

p

2 -complete for unions of FILTER-free wd-patterns, and undecidable for frag-
ments with projection. Finally, from the results in [41] it follows that containment
is undecidable for U . On the other hand, nothing seems to be known so far for
well-designed patterns with FILTER.

We next show that equivalence and containment are both �
p

2 -complete for Pwwd
and Uwwd (whereas they are undecidable for Swwd by the results in [35]). As the
following lemma shows, the upper bound for containment follows from a small coun-
terexample property: if P �⊆ P ′ for some P and P ′ from Uwwd, then there is a
witnessing mapping and graph of size O(|P | + |P ′|). Given this property, a �

p

2
algorithm for containment is straightforward—we guess a mapping μ and a graph
G of linear size, check that μ /∈ �P ′�G, and then call a CONP oracle for checking
μ ∈ �P �G. As a corollary, EQUIVALENCE(Uwwd) is also in �

p

2 .

Lemma 5 Let P and P ′ be two patterns from Uwwd. If P �⊆ P ′ then there exists a
mapping μ and a graph G of size O(|triples(P)| + |triples(P ′)|) such that μ ∈ �P �G

but μ /∈ �P ′�G.

Proof Without loss of generality, let us assume that

P = P1 UNION P2 UNION . . . UNION Pn,

P ′ = P ′
1 UNION P ′

2 UNION . . . UNION P ′
m,

where all Pi and P ′
j are wwd-patterns in OF-normal form.

Since P �⊆ P ′, there exists a graph G′, a mapping μ, and a pattern Pi , 1 ≤
i ≤ n, such that μ ∈ �Pi�G′ , but μ /∈ �P ′

j �G′ for every P ′
j . Hence, μ is a pp-

solution to Pi over G′ with corresponding r-subtree T ((Pi)μ) of the CPT T (Pi).
Let G0 = μ(triples((Pi)μ)). By construction, we have that G0 ⊆ G′ and |G0| ≤
|triples((Pi)μ)| ≤ |triples(Pi)| ≤ |triples(P)|. Moreover, μ ∈ �Pi�G0 , because all the
matches and constraints, including the ones on the top-level, stay unchanged. In fact,
μ ∈ �Pi�G′′ for any G′′ such that G0 ⊆ G′′ ⊆ G′.

If μ /∈ �P ′
j �G0 for every j , then G0 satisfies all the properties required from G.

Otherwise, there exists P ′
j among P ′

1, . . . , P
′
m such that μ ∈ �P ′

j �G0 . Since G0 ⊆ G′,
μ is a pp-solution to P ′

j over G′. Consider the corresponding pattern (P ′
j)μ (i.e.,

the maximal pattern witnessing μ in G′ obtained from P ′
j by dropping the right

arguments of some OPT operators), the r-subtree T ((P ′
j)μ) of the CPT T (P ′

j), and
the “image” μ(triples((P ′

j)μ)). Note that we may have μ(triples((P ′
j)μ)) ⊆ G0

or not: the latter is possible because the maximal r-subtree of T (P ′
j) witnessing

μ in G0 may be different from T ((P ′
j)μ), which is maximal in G′. Let G′

1 =
G0 ∪ μ(triples((P ′

j)μ)). We define G1 depending on whether μ ∈ �P ′
j �G′

1
or not.

If μ /∈ �P ′
j �G′

1
, then let G1 = G′

1. Otherwise, since μ /∈ �P ′
j �G′ by assump-

tion, there exists a child v of T ((P ′
j)μ) and a mapping μ0 such that μ|v � μ0

800 Theory Comput Syst (2018) 62:772–809

and μ0(triples(v)) ⊆ G′. Then the graph G1 = G′
1 ∪ μ0(triples(v)) is such that

μ /∈ �P ′
j �G1 . In either case, μ ∈ �Pi�G1 because G0 ⊆ G1 ⊆ G′. Moreover, we

have μ /∈ �P ′
j �G′′ for every G′′ such that G1 ⊆ G′′ ⊆ G′. To see this, suppose

for contradiction that μ ∈ �P ′
j �G′′ for a graph G′′ as above. Then there must be a

child v′ of T ((P ′
j)μ0) such that v′ ≺ v, μo|v′ � μ and μ(triples(v′)) ⊆ G′′. Since

T ((P ′
j)μ0) and T ((P ′

j)μ) are identical restricted to nodes preceding v with respect to
≺, v′ is a child of T ((P ′

j)μ). Thus, v′ is not contained in T ((P ′
j)μ), which contradicts

maximality of T ((P ′
j)μ) since μ(triples(v′)) ⊆ G′′ ⊆ G′.

If μ /∈ �P ′
j �G1 for all other j as well, then G1 satisfies all the properties required

from G. Otherwise we can extend G1 to a graph G2 on the base of some other P ′
j with

μ ∈ �P ′
j �G1 in the same way as G1 extends G0. We then have G2 ⊆ G′, μ ∈ �P �G2 ,

and μ /∈ �P ′
j �G2 for j from both steps. Repeating the extension step until there are no

P ′
j having μ as a solution on the resulting graph, we obtain a graph that satisfies all

the properties required from G; in particular, for each j the number of added triples
to the graph is bounded by |triples(P ′

j)|.
Hardness of equivalence is established in the following lemma by a reduction of

∀∃3SAT, while containment is �
p

2 -hard by the results in [35]. Note that both results
hold even for fragments without FILTER.

Lemma 6 Problem EQUIVALENCE(Owwd) is �
p

2 -hard for the fragment Owwd of
FILTER-free wwd-patterns.

Proof We proceed by reduction of the ∀∃3SAT problem, that is, the problem of
checking whether a formula of the form

∀x̄ ∃ȳ ψ, (14)

holds for a conjunction ψ of clauses t1 ∨ t2 ∨ t3 with ti propositional literals, that is,
propositional variables from x̄ ∪ ȳ or their negations. Without loss of generality, we
assume that ψ contains no tautologous clauses and no clauses with duplicate literals.
Let φ be a formula of the form (14). Starting from φ, we construct FILTER-free wwd-
patterns P and P ′ in OF-normal form, and then show that φ is true if and only if
P ≡ P ′. Let x̄ = x1, . . . , xn and ȳ = y1, . . . , ym.

For each clause γ = t1 ∨ t2 ∨ t3, there are exactly 7 assignments to the variables
in t1, t2, t3 making γ true, and exactly one assignment making γ false (since γ is
assumed to be non-tautologous and contain no duplicate literals). Let, for each such
γ in ψ , each �, 1 ≤ � ≤ 7, and each j , 1 ≤ j ≤ 3, val(γ, �, j) = � if the variable of
literal tj evaluates to true in the �’th assignment making γ true, and val(γ, �, j) = ⊥,
otherwise; here � and ⊥ are fresh IRIs. Let also, for every clause γ in ψ , cl1γ , . . . , cl7γ
and lit1γ , lit2γ , lit3γ be fresh IRIs. We define, for each γ and 1 ≤ � ≤ 7, a basic pattern

B�
γ = {(cl�γ , lit1γ , val(γ, �, 1)), (cl�γ , lit2γ , val(γ, �, 2)), (cl�γ , lit3γ , val(γ, �, 3))},

and a basic pattern
B∗

γ = B1
γ ∪ · · · ∪ B7

γ

(note that these patterns do not have any variables).

Theory Comput Syst (2018) 62:772–809 801

Let, for each propositional variable z ∈ x̄ ∪ ȳ, iriz be a fresh IRI and ?z be a fresh
SPARQL variable. For each γ , let also ?cγ , ?v1

γ , ?v2
γ , ?v3

γ be fresh variables. Let

Bγ = {(?cγ , lit1γ , ?v1
γ), (?cγ , lit2γ , ?v2

γ), (?cγ , lit3γ , ?v3
γ),

(var1
γ , iri1γ , ?v1

γ), (var2
γ , iri2γ , ?v2

γ), (var3
γ , iri3γ , ?v3

γ)},
where each varjγ and irijγ , 1 ≤ j ≤ 3, are the variable and the IRI corresponding to

the variable of literal tj in γ ; that is, varjγ = ?z and irijγ = iriz if tj = z or tj = ¬z.
Let ?u and ?s be fresh variables and r , cy⊥, cy� fresh IRIs. We define

Bbase = {(?u, irix1 , �), . . . , (?u, irixn , �)},
B⊥

i = {(?xi, irixi
, ⊥)}, for all 1 ≤ i ≤ n,

B�
i = {(?xi, irixi

, �)}, for all 1 ≤ i ≤ n,

Bvalid = {(?s, r, ?s),
(cy⊥, iriy1 , ⊥), . . . , (cy⊥, iriym, ⊥),

(cy�, iriy1 , �), . . . , (cy�, iriym, �)} ∪
B∗

γ1
∪ · · · ∪ B∗

γk
, where ψ = γ1 ∧ · · · ∧ γk,

Bψ = {(?s, r, ?s)} ∪ Bγ1 ∪ · · · ∪ Bγk
, where ψ = γ1 ∧ · · · ∧ γk.

For example, a visualisation of these patterns for

φ = ∀x1, x2 ∃y1, y2 (¬x1 ∨ y1 ∨ y2) ∧ (¬y1 ∨ ¬y2 ∨ x2)

is shown in Fig. 6.
Finally, let

P = ((. . . ((Bbase OPT B⊥
1) OPT B�

1) OPT . . . OPT B⊥
n) OPT B�

n) OPT Bψ,

and

P ′ = (((. . . ((Bbase OPT B⊥
1) OPT B�

1) OPT . . . OPT B⊥
n) OPT B�

n)

OPT Bvalid) OPT Bψ

be two FILTER-free wwd-patterns in OF-normal form.
We next show that φ is true if and only if P is equivalent to P ′, starting with the

forward direction.
Let φ be true, yet, for the sake of contradiction, P is not equivalent to P ′. Then

there is a graph G and mapping μ such that μ ∈ �P �G, but μ �∈ �P ′�G. Since
patterns P and P ′ have the same root Bbase, which contains ?u as the only variable,
we conclude that ?u ∈ dom(μ). Each ?xi is also in dom(μ) by the construction of
P , since there is a homomorphism from the corresponding leaf B�

i to the root Bbase.
However, it is not necessary that (μ(?xi), irixi

, �) is in G because if G contains a
triple of the form (c, irixi

, ⊥) for some IRI c, we will have (μ(?xi), irixi
, ⊥) ∈ G.

Note also that nothing prevents G from containing both a triple (c, irixi
, ⊥) and a

triple (c, irixi
, �) for some i. Depending on whether ?s ∈ dom(μ) or not, we have

two cases.

Case 1 Let ?s ∈ dom(μ), that is, there is a homomorphism from Bψ to G that aligns
with the previous assignment of all ?xi . In particular, this means that dom(μ) =

802 Theory Comput Syst (2018) 62:772–809

(a)

(b)

(c) (d) (e)

Fig. 6 Visualisation of the patterns (a) B∗
γ1

, (b) B∗
γ2

, (c) Bγ1 , (d) Bγ2 , and (e) Bvalid used in the proof of
Lemma 6 on the example formula ∀x1, x2 ∃y1, y2 γ1∧γ2 with γ1 = ¬x1∨y1∨y2 and γ2 = ¬y1∨¬y2∨x2

vars(P) = vars(P ′). If there is no homomorphism from Bvalid to G, then μ ∈ �P ′�G,
because Bψ is the last leaf of P ′ as well, and nothing prevents it from matching.
But this contradicts the assumption. However, even if there is a homomorphism h

from Bvalid to G, we still have a contradiction because μ ∈ �P ′�G still holds. Indeed,
?s is the only variable in Bvalid and is essentially isolated in Bvalid, so if h is a
homomorphism from Bvalid to G, then h′, which maps ?s to μ(?s), is also such a
homomorphism (in other words, since by the assumptions of this case, we know that
(?s, r, ?s) has a match in G, the existence of h just means that all the ground triples

Theory Comput Syst (2018) 62:772–809 803

of Bvalid are in G). This means, however, that nothing prevents Bψ from matching in
P ′, implying μ ∈ �P ′�G.

Case 2 Let ?s /∈ dom(μ). Since μ /∈ �P ′�G, there is no homomorphism from Bψ to
G but there is one from Bvalid to G, that is, all ground triples of Bvalid are in G (the
non-existence of a homomorphism from Bψ to G is immediate since ?s /∈ dom(μ)

and μ ∈ �P �G; the existence of a homomorphism from Bvalid to G then follows
since otherwise we would have μ ∈ �P ′�G). Consider now a truth assignment α of
variables x̄ such that if α(xi) is true then (μ(?xi), irixi

, �) ∈ G and if α(xi) is false
then (μ(?xi), irixi

, ⊥) ∈ G (as we mentioned earlier, α may be not unique, but the
argument does not depend on its uniqueness). Since φ is true, we know that α can be
extended to the variables ȳ in such a way that each clause in ψ holds. Let α′ be such
an extension, and let μ′ be an extension of μ to the variables in Bψ such that, for all j ,
μ′(?yj) = cy� if α′(yj) is true and μ′(?yj) = cy⊥ otherwise. Then, for every clause
γ in ψ , the IRIs μ′(?v1

γ), μ′(?v2
γ), μ′(?v3

γ) correspond to the values α′(z1), α′(z2),
α′(z3), respectively, where z1, z2, z3 are the variables in the literals t1, t2, t3 of γ .
Moreover, μ′(?cγ) = cl�γ for � the number of the assignment α′(z1), α

′(z2), α
′(z3);

this assignment makes γ true by the choice of α′ (in other words, for every γ there
is some � such that (μ′(?cγ), litiγ , μ′(?vi

γ)) ∈ B�
γ for all 1 ≤ i ≤ 3). Hence, the

extension μ′ is contained in �P �G, and hence μ /∈ �P �G, which, however, contradicts
the original assumption.

Since both cases yield a contradiction, we conclude that P is equivalent to P ′.
We continue with the backward direction of the equivalence. Suppose that P ≡ P ′,

yet, for the sake of contradiction, φ is false. Then, there is a truth assignment α of the
variables x̄ such that for each extension α′ of α to the variables ȳ there is a clause γ in
ψ that evaluates to false under α′. Fix such an α and consider the graph G consisting
of the following triples:

– the triple (u, irixi
, �), for each xi in x̄ and a fresh IRI u;

– the triple (cxi
, irixi

, �), for each xi in x̄ with α(xi) true, and the triple
(cxi

, irixi
, ⊥), for each xi in x̄ with α(xi) false, where cx1 , . . . , cxn are fresh IRIs;

– all ground triples from Bvalid, that is, all of its triples except (?s, r, ?s);
– the triple (s, r, s) for a fresh IRI s.

Consider also the mapping μ such that

– μ(?u) = u;
– μ(?xi) = cxi

, for each xi in x̄.

Clearly, μ is a pp-solution to both P and P ′ over G. However, by the construc-
tion of G, the mapping μ′ = μ ∪ {?s �→ s} is a pp-solution to P ′ over G as
well. Thus, μ is not a solution to P ′ over G, and, since P ⊆ P ′, we also have
μ /∈ �P �G. Consequently, it must be possible to further extend μ′ to a mapping μ′′
that is both in �P �G and in �P ′�G, and is defined on all variables in Bψ . Essentially,
this means that there is a homomorphism from Bψ to Bvalid that preserves ?s. Con-
sider now the extension α′ of α to the variables ȳ such that μ′′(?yj) = cy� if α′(yj)

is true and μ′′(?yj) = cy⊥ otherwise. By the construction of Bvalid, this assignment

804 Theory Comput Syst (2018) 62:772–809

validates all clauses in ψ , which, however, contradicts the assumption that φ is
false.

Thus, we have shown that φ is true if and only if P ≡ P ′.

Theorem 7 Problems EQUIVALENCE(L) and CONTAINMENT(L) are both �
p

2 -
complete for any L∈{Pwwd,Uwwd}.

Proof The existence of a �
p

2 algorithm for containment immediately follows from
Lemma 5: to show that P �⊆ P ′, for P,P ′ ∈ Pwwd, we just need to guess, in NP,
a graph G of linear size as well as a mapping μ, check that μ /∈ �P ′�G, and then
call for a CONP oracle for checking that μ ∈ �P �G. The claim for patterns in Uwwd
is similar, but involves guessing a disjunct P1 of P with μ ∈ �P1�G and checking
μ /∈ �P ′

1�G for every disjunct P ′
1 of P ′. Since P ≡ P ′ if and only if containment

holds in both directions, the problem EQUIVALENCE(Uwwd) is also in �
p

2 .
Hardness follows by the results in [35] for containment and by Lemma 6 for

equivalence.

Hence, for UNION- and FILTER-free patterns, the step from well-designed to
weakly well-designed OPT incurs a complexity jump for containment and equiva-
lence. However, for the fragments with UNION or projection complexity remains the
same in both cases. As far as we are aware, these are the first decidability results
on query equivalence and related problems for SPARQL fragments with OPT and
FILTER.

8 Analysis of DBpedia Logs

In this section, we present an analysis of query logs over DBpedia, which suggests
that the step from wd-patterns to wwd-patterns makes a dramatic difference in real
life: while only about half of the queries with OPT have well-designed patterns,
almost all of these patterns fall into the weakly well-designed fragment.

DBpedia [26] is a project providing access to RDF data extracted from Wikipedia
via a SPARQL endpoint. DBpedia query logs are well suited for analysing the struc-
ture of real-life SPARQL queries as they contain a large amount of general-purpose
knowledge base queries, generated both manually and automatically. DBpedia query
logs have been analysed by Picalausa and Vansummeren [34], who reported that,
over a period in 2010, about 46.38% of a total of 1344K distinct DBpedia queries
used OPT. However, only 47.80% of the queries with OPT had well-designed pat-
terns. Another analysis of DBpedia logs from the USEWOD 2011 data set performed
by Arias Gallego et al. [7] concluded that 16.61% of about 5166K queries contained
OPT; however, detailed structure of queries was not analysed.

We considered query logs over DBpedia 3.9 from USEWOD 2015 [30] and USE-
WOD 2016 [29]. The USEWOD 2015 DBpedia dataset is a random selection of
almost 14M queries from the first half of 2014 while the USEWOD 2016 dataset
contains 35M queries from the second half of 2015. We removed syntactically incor-
rect queries as well as queries outside of S (in particular, queries using operators

Theory Comput Syst (2018) 62:772–809 805

specific to SPARQL 1.1). Also, we rewrote the patterns of the remaining queries to
unions of UNION-free patterns as proposed in [33] and eliminated duplicates, which
left us with 6.6M queries in USEWOD 2015 and 9.1M queries in USEWOD 2016.
Finally, we isolated queries involving OPT and counted how many of their patterns
were in Uwd and in Uwwd.

The results are given in Table 1. They confirm that a non-negligible number of
DBpedia queries use OPT (over 17%). However, by far not all queries with OPT are
well-designed (only about 44% for USEWOD 2015 and 52% for USEWOD 2016),
which is consistent with the results in [34]. On the other hand, almost all of the
patterns with OPT (over 99.9% in both cases) are weakly well-designed, which we
consider as the main practical justification for wwd-patterns.

What about the remaining 0.05% of queries with OPT? We looked at a number
of such queries and identified what we believe to be the three most common sources
of non-weakly-well-designedness in query patterns. The first and seemingly most
common such source is joins between an OPT subpattern and another pattern on a
variable that only occurs in the right argument of the OPT subpattern. The following
query is an example of such a join:

SELECT ?�, ?u WHERE

((?s,label, ?�) OPT (?s,type, ?t)) AND (?t,subClassOf, ?u).

(15)

We believe that the vast majority if not all such queries are erroneous as they are
highly unlikely to yield meaningful answers in case the optional part fails to match.
Intuitively, one would expect an answer to query (15) to contain the label of an object
in variable ?� together with one of its supertypes in variable ?u. And indeed, this is
the answer returned by the query on graph G in Fig. 7a (see Fig. 7b). However, if an
object in ?s is not assigned any type, which is explicitly allowed by the use of OPT,
the query does not just return its label in ?� leaving ?u unbound, as one would expect;
instead, it returns the cross product of the label and all types in the graph, which are,
of course, completely unrelated to the object in ?s (see Fig. 7c and d).

Table 1 Structure of query patterns in DBpedia logs from USEWOD 2015 and 2016

USEWOD 2015 USEWOD 2016

Unique Fraction Fraction Unique Fraction Fraction

patterns of total of patterns patterns of total of patterns

with OPT with OPT

Total 6 606 201 100% 9 119 492 100%

Patterns with OPT 1 147 704 17.37% 100% 1 582 698 17.36% 100%

Unions of wd-patterns 500 676 7.58% 43.62% 816 276 8.95% 51.57%

Unions of wwd-patterns 1 147 135 17.36% 99.95% 1 582 339 17.35% 99.98%

806 Theory Comput Syst (2018) 62:772–809

(a) (b) (c) (d)

Fig. 7 (a) Graph G; (b) answers to query (15) over G; (c) graph G′; (d) answers over G′

A second source of non-weakly-well-designed patterns is joins between an OPT
subpattern and another pattern where the left argument of the OPT subpattern is
empty. The following query illustrates this source:

SELECT ?b, ?h, ?c WHERE

(?b,height, ?h) AND (∅ OPT (?b,city, ?c)).

(16)

Intuitively, query (16) computes the join between the answers to the pattern
(?b,height, ?h) and those to (?b,city, ?c), provided the second set is non-empty;
otherwise, the query just returns the answers to (?b,height, ?h). Hence, query (16)
is equivalent to the following query in Swwd:

SELECT ?b, ?h, ?c WHERE

(((?b,height, ?h) OPT (?b′,city, ?c′)) FILTER¬bound(?c′))
UNION ((?b,height, ?h) AND (?b,city, ?c)).

We conclude that, while queries such as (16) may make sense in practice, they can
be easily and intuitively restated using wwd-patterns.

Our final, and most interesting, source of real-life non-wwd-patterns is UNION in
the right argument of OPT. For instance, consider the pattern

(?p,type,person) OPT ((?p,son, ?a) UNION (?p,daughter, ?a)). (17)

The pattern is quite intuitive and it is easy to imagine similar patterns being useful in
various applications. However, the normalisation algorithm in [33], which “pushes”
unions outside, converts (17) to a pattern that is inherently non-well-designed (due to
the two occurrences of ?a in the third disjunct):

((?p,type,person) AND (?p,son, ?a))

UNION

((?p,type,person) AND (?p,daughter, ?a))

UNION

((((?p,type,person) OPT ((?p,son, ?a) AND (?x1, ?y1, ?z1))) AND

((?p,type,person) OPT ((?p,daughter, ?a) AND (?x2, ?y2, ?z2))))

FILTER ¬bound(?x1) ∧ ¬bound(?x2)).

We believe that this behaviour is unavoidable in general as we expect query answer-
ing to become �

p

2 -hard over patterns that contain UNION in the right argument of
OPT. Yet, for certain classes of patterns, generalising (17), one may be able to obtain

Theory Comput Syst (2018) 62:772–809 807

a CONP evaluation algorithm by accounting for UNION natively rather than relying
on the normalisation in [33]. A detailed study of such patterns, however, is outside
the scope of the present paper.

9 Conclusion and Future Work

In this paper, we introduced a new fragment of SPARQL patterns called weakly
well-designed patterns. This fragment extends the widely studied well-designed frag-
ment by allowing variables from the optional side of an OPT-subpattern that are not
“guarded” by the mandatory side to occur in certain positions outside of the subpat-
tern. We showed that queries with wwd-patterns enjoy the same low complexity of
evaluation as well-designed queries but cover almost all real-life queries. Moreover,
our fragment is the maximal CONP fragment that does not impose structural restric-
tions on basic patterns and filter conditions. We studied the expressive power of the
fragment and the complexity of its query optimisation problems.

For future work, we want to extend wwd-patterns to allow for non-top-level occur-
rences of UNION and projection. As we have seen in the previous section, this
promises to be a challenging task since a naive extension of our definitions to such
constructs is likely to increase reasoning complexity. Also, we want to take into
account features of SPARQL 1.1 [17] such as GRAPH, NOT EXISTS and property
paths. Finally, we would like to implement our ideas in a prototype system and
compare its performance with existing SPARQL engines.

Acknowledgements This work was supported by the Engineering and Physical Sciences Research
Council [grant numbers EP/J020214/1, EP/L012138/1, EP/N014359/1].

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, dis-
tribution, and reproduction in any medium, provided you give appropriate credit to the original author(s)
and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Ahmetaj, S., Fischl, W., Pichler, R., Simkus, M., Skritek, S.: Towards reconciling SPARQL and certain
answers. In: Gangemi, A., Leonardi, S., Panconesi, A. (eds.) Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, pp. 23–33. ACM (2015)

2. Angles, R., Gutierrez, C.: The expressive power of SPARQL. In: Sheth, A.P., Staab, S., Dean, M.,
Paolucci, M., Maynard, D., Finin, T.W., Thirunarayan, K. (eds.) ISWC 2008, LNCS, vol. 5318, pp.
114–129. Springer (2008)

3. Arenas, M., Conca, S., Pérez, J.: Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will
prevent adoption of the standard. In: Mille, A., Gandon, F.L., Misselis, J., Rabinovich, M., Staab, S. (eds.)
Proceedings of the 21st World Wide Web Conference, WWW 2012, pp. 629–638. ACM (2012)

4. Arenas, M., Gottlob, G., Pieris, A.: Expressive languages for querying the semantic web. In: Hull,
R., Grohe, M. (eds.) Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on
Principles of Database Systems, PODS 2014, pp. 14–26. ACM (2014)

5. Arenas, M., Pérez, J.: Querying semantic web data with SPARQL. In: Lenzerini, M., Schwentick,
T. (eds.) Proceedings of the 30th ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2011, pp. 305–316. ACM (2011)

http://creativecommons.org/licenses/by/4.0/

808 Theory Comput Syst (2018) 62:772–809

6. Arenas, M., Ugarte, M.: Designing a query language for RDF: marrying open and closed worlds.
In: Milo, T., Tan, W. (eds.) Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, PODS 2016, pp. 225–236. ACM (2016)

7. Arias Gallego, M., Fernández, J.D., Martı́nez-Prieto, M.A., de la Fuente, P.: An empirical study of
real-world SPARQL queries. In: Proceedings of the 1st International Workshop on Usage Analysis
and the Web of Data, USEWOD 2011. arXiv:1103.5043 (2011)

8. Barceló, P., Pichler, R., Skritek, S.: Efficient evaluation and approximation of well-designed pattern
trees. In: Milo, T., Calvanese, D. (eds.) Proceedings of the 34th ACM Symposium on Principles of
Database Systems, PODS 2015, pp. 131–144. ACM (2015)

9. Bischof, S., Krötzsch, M., Polleres, A., Rudolph, S.: Schema-agnostic query rewriting in SPARQL 1.1.
In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P.T., Noy,
N.F., Janowicz, K., Goble, C.A. (eds.) ISWC 2014, Part I, LNCS, vol. 8796, pp. 584–600. Springer
(2014)

10. Buil Aranda, C., Arenas, M., Corcho, Ó.: Semantics and optimization of the SPARQL 1.1 federation
extension. In: Antoniou, G., Grobelnik, M., Simperl, E.P.B., Parsia, B., Plexousakis, D., Leenheer,
P.D., Pan, J.Z. (eds.) ESWC 2011, Part II, LNCS, vol. 6644, pp. 1–15. Springer (2011)

11. Buil Aranda, C., Polleres, A., Umbrich, J.: Strategies for executing federated queries in SPARQL 1.1. In:
Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P.T., Noy, N.F.,
Janowicz, K., Goble, C.A. (eds.) ISWC 2014, Part II, LNCS, vol. 8797, pp. 390–405. Springer (2014)

12. Chekol, M.W., Euzenat, J., Genevès, P., Layaı̈da, N.: SPARQL query containment under RDFS entail-
ment regime. In: Gramlich, B., Miller, D., Sattler, U. (eds.) IJCAR 2012, LNCS, vol. 7364, pp.
134–148. Springer (2012)

13. Chekol, M.W., Euzenat, J., Genevès, P., Layaı̈da, N.: SPARQL query containment under SHI
axioms. In: Hoffmann, J., Selman, B. (eds.) Proceedings of the 26th AAAI Conference on Artificial
Intelligence, AAAI 2012, pp. 10–16. AAAI Press (2012)

14. Cyganiak, R., Wood, D., Lanthaler, M.: RDF 1.1 concepts and abstract syntax. W3C recommendation,
W3C. http://www.w3.org/TR/rdf11-concepts/ (2014)

15. Geerts, F., Unger, T., Karvounarakis, G., Fundulaki, I., Christophides, V.: Algebraic structures for
capturing the provenance of SPARQL queries. J. ACM 63(1), 7:1–7:63 (2016)

16. Halpin, H., Cheney, J.: Dynamic provenance for SPARQL updates. In: Mika, P., Tudorache, T., Bern-
stein, A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P.T., Noy, N.F., Janowicz, K., Goble,
C.A. (eds.) ISWC 2014, Part I, LNCS, vol. 8796, pp. 425–440. Springer (2014)

17. Harris, S., Seaborne, A.: SPARQL 1.1 query language. W3C recommendation, W3C. http://www.w3.
org/TR/sparql11-query/ (2013)

18. Hayes, P.J., Patel-Schneider, P.F.: RDF 1.1 semantics. W3C recommendation, W3C. http://www.w3.
org/TR/rdf11-mt/ (2014)

19. Kaminski, M., Kostylev, E.V.: Beyond well-designed SPARQL. In: Martens, W., Zeume, T. (eds.)
Proceedings of the 19th International Conference on Database Theory, ICDT 2016, LIPIcs, vol. 48,
pp. 5:1–5:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016)

20. Kaminski, M., Kostylev, E.V., Cuenca Grau, B.: Semantics and expressive power of subqueries and aggre-
gates in SPARQL 1.1. In: Bourdeau, J., Hendler, J., Nkambou, R., Horrocks, I., Zhao, B.Y. (eds.)
Proceedings of the 25th International Conference on World Wide Web, WWW 2016, pp. 227–238. ACM
(2016)

21. Kontchakov, R., Kostylev, E.V.: On expressibility of non-monotone operators in SPARQL. In: Baral,
C., Delgrande, J.P., Wolter, F. (eds.) Proceedings of the 15th International Conference on Principles
of Knowledge Representation and Reasoning, KR 2016, pp. 369–379. AAAI Press (2016)

22. Kontchakov, R., Rezk, M., Rodriguez-Muro, M., Xiao, G., Zakharyaschev, M.: Answering SPARQL
queries over databases under OWL 2 QL entailment regime. In: Mika, P., Tudorache, T., Bernstein,
A., Welty, C., Knoblock, C.A., Vrandecic, D., Groth, P.T., Noy, N.F., Janowicz, K., Goble, C.A. (eds.)
ISWC 2014, Part I, LNCS, vol. 8796, pp. 552–567. Springer (2014)

23. Kostylev, E.V., Cuenca Grau, B.: On the semantics of SPARQL queries with optional matching under
entailment regimes. In: Mika, P., Tudorache, T., Bernstein, A., Welty, C., Knoblock, C.A., Vrandecic,
D., Groth, P.T., Noy, N.F., Janowicz, K., Goble, C.A. (eds.) ISWC 2014, Part II, LNCS, vol. 8797, pp.
374–389. Springer (2014)

24. Kostylev, E.V., Reutter, J.L., Romero, M., Vrgoč, D.: SPARQL with property paths. In: Arenas, M.,
Corcho, Ó., Simperl, E., Strohmaier, M., d’Aquin, M., Srinivas, K., Groth, P.T., Dumontier, M., Heflin,
J., Thirunarayan, K., Staab, S. (eds.) ISWC 2015, Part I, LNCS, vol. 9366, pp. 3–18. Springer (2015)

http://arxiv.org/abs/1103.5043
http://www.w3.org/TR/rdf11-concepts/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/sparql11-query/
http://www.w3.org/TR/rdf11-mt/
http://www.w3.org/TR/rdf11-mt/

Theory Comput Syst (2018) 62:772–809 809

25. Kostylev, E.V., Reutter, J.L., Ugarte, M.: CONSTRUCT queries in SPARQL. In: Arenas, M., Ugarte,
M. (eds.) Proceedings of the 18th International Conference on Database Theory, ICDT 2015, LIPIcs,
vol. 31, pp. 212–229. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015)

26. Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D., Mendes, P.N., Hellmann, S., Morsey,
M., van Kleef, P., Auer, S., Bizer, C.: DBpedia—a large-scale, multilingual knowledge base extracted
from Wikipedia. Semantic Web 6(2), 167–195 (2015)

27. Letelier, A., Pérez, J., Pichler, R., Skritek, S.: Static analysis and optimization of semantic web queries.
ACM Trans. Database Syst. 38(4), 25 (2013)

28. Losemann, K., Martens, W.: The complexity of evaluating path expressions in SPARQL. In: Benedikt,
M., Krötzsch, M., Lenzerini, M. (eds.) Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART
Symposium on Principles of Database Systems, PODS 2012, pp. 101–112. ACM (2012)

29. Luczak-Rösch, M., Aljaloud, S., Berendt, B., Hollink, L.: USEWOD 2016 research dataset.
doi:10.5258/SOTON/385344 (2016)

30. Luczak-Rösch, M., Berendt, B., Hollink, L.: USEWOD 2015 research dataset. doi:10.5258/SOTON/
379407 (2015)

31. Manola, F., Miller, E., McBride, B.: RDF 1.1 primer. W3C working group note, W3C. http://www.
w3.org/TR/rdf11-primer/ (2014)

32. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. In: Cruz, I.F., Decker, S.,
Allemang, D., Preist, C., Schwabe, D., Mika, P., Uschold, M., Aroyo, L. (eds.) ISWC 2006, LNCS,
vol. 4273, pp. 30–43. Springer (2006)

33. Pérez, J., Arenas, M., Gutierrez, C.: Semantics and complexity of SPARQL. ACM Trans. Database
Syst. 34(3), 16 (2009)

34. Picalausa, F., Vansummeren, S.: What are real SPARQL queries like? In: Virgilio, R.D., Giunchiglia,
F., Tanca, L. (eds.) Proceedings of the 3rd International Workshop on Semantic Web Information
Management, SWIM 2011, pp. 7:1–7:6. ACM (2011)

35. Pichler, R., Skritek, S.: Containment and equivalence of well-designed SPARQL. In: Hull, R., Grohe,
M. (eds.) Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2014, pp. 39–50. ACM (2014)

36. Polleres, A., Wallner, J.P.: On the relation between SPARQL 1.1 and answer set programming. J.
Appl. Non-Classical Log. 23(1–2), 159–212 (2013)

37. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF. W3C recommendation, W3C.
http://www.w3.org/TR/rdf-sparql-query/ (2008)

38. Schmidt, M., Meier, M., Lausen, G.: Foundations of SPARQL query optimization. In: Segoufin,
L. (ed.) Proceedings of the 13th International Conference on Database Theory, ICDT 2010, pp. 4–33.
ACM (2010)

39. Zhang, X., Van den Bussche, J.: On the power of SPARQL in expressing navigational queries.
Comput. J. 58(11), 2841–2851 (2015)

40. Zhang, X., Van den Bussche, J.: On the primitivity of operators in SPARQL. Inf. Process. Lett. 114(9),
480–485 (2014)

41. Zhang, X., Van den Bussche, J., Picalausa, F.: On the satisfiability problem for SPARQL patterns. J.
Artif. Intell. Res. (JAIR) 56, 403–428 (2016)

http://dx.doi.org/10.5258/SOTON/385344
http://dx.doi.org/10.5258/SOTON/379407
http://dx.doi.org/10.5258/SOTON/379407
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf11-primer/
http://www.w3.org/TR/rdf-sparql-query/

	Complexity and Expressive Power of Weakly Well-Designed SPARQL
	Abstract
	Introduction
	SPARQL Query Language
	RDF Graphs
	SPARQL Syntax
	SPARQL Semantics

	Weakly Well-Designed Patterns
	OPT-FILTER-Normal Form and Constraint Pattern Trees
	Evaluation of wwd-Patterns
	Expressivity of wwd-Patterns and Their Extensions
	Static Analysis of wwd-Patterns
	Analysis of DBpedia Logs
	Conclusion and Future Work
	Acknowledgements
	Open Access
	References

