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Abstract The dysfunction of the small-conductance calcium-
activated K+ channel SK3 has been described as one of the
factors responsible for the progress of psychoneurological dis-
eases, but the molecular basis of this is largely unknown. This
report reveals through use of immunohistochemistry and com-
putational tomography that long-term increased expression of
the SK3 small-conductance calcium-activated potassium
channel (SK3-T/T) in mice induces a notable bilateral reduc-
tion of the hippocampal area (more than 50 %). Histological
analysis showed that SK3-T/T mice have cellular disarrange-
ments and neuron discontinuities in the hippocampal forma-
tion CA1 and CA3 neuronal layer. SK3 overexpression

resulted in cognitive loss as determined by the object recog-
nition test. Electrophysiological examination of hippocampal
slices revealed that SK3 channel overexpression induced de-
ficiency of long-term potentiation in hippocampal microcir-
cuits. In association with these results, there were changes at
the mRNA levels of some genes involved in Alzheimer’s dis-
ease and/or linked to schizophrenia, epilepsy, and autism. Tak-
en together, these features suggest that augmenting the func-
tion of SK3 ion channel in mice may present a unique oppor-
tunity to investigate the neural basis of central nervous system
dysfunctions associated with schizophrenia, Alzheimer’s dis-
ease, or other neuropsychiatric/neurodegenerative disorders in
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this model system. As a more detailed understanding of the
role of the SK3 channel in brain disorders is limited by the
lack of specific SK3 antagonists and agonists, the results ob-
served in this study are of significant interest; they suggest a
new approach for the development of neuroprotective strate-
gies in neuropsychiatric/neurodegenerative diseases with SK3
representing a potential drug target.

Keywords Potassium channel KCa2.3 . Learning and
memory .Whole-cell patch clamp . Schizophrenia .

Alzheimer’s disease

Introduction

SK3 (KCa2.3, KCNN3) belongs to the family of tetrameric,
small-conductance calcium-activated potassium channels. At
the cellular level, SK3 contributes significantly to the fine-
tuning of the duration and amplitude of the action potential
after hyperpolarization, regulation of excitability and firing
patterns, neurotransmitter release, and synaptic plasticity
[1–3]. SK3 is expressed abundantly in the brain including
the hippocampus, the limbic system, and midbrain regions
rich in monoaminergic neurons [4].

SK3 controls frequency and precision of intrinsic pacemak-
er activity in dopaminergic neurons [5]. Apamin, a bee venom
component that depolarizes dopaminergic neurons by
blocking SK channels, facilitates the acquisition of
hippocampal-dependent learning tasks in the Morris water
maze test [6]. Doxycycline-induced conditional SK3-
deficient mice exhibit alterations in cognition tests [7, 8],
and SK3 downregulation by antisense reverses age-related
deficits in hippocampus-dependent memory tasks and long-
term potentiation (LTP) [9]. Conversely, elevated SK3 expres-
sion in hippocampi of aged mice contributes to reduced LTP
[9] and SK3 overexpressing mice present with impairments in
cognition [10]. Finally, the SK3 gene, KCNN3, maps to chro-
mosome 1q21, a region containing a major susceptibility lo-
cus for schizophrenia, and the polymorphic polyglutamine
repeat within this gene is reportedly associated with this ill-
ness [11–14]. SK3 contributes to the cognitive abilities of
schizophrenic patients, as longer polyglutamine stretches are
associated with smaller current amplitude and better cognitive
performance [10]. Also, a rare truncation mutant of SK3
(hSK3Δ), originally identified in a patient with schizophrenia,
has been found to alter the activity pattern in dopaminergic
neurons and reduce attention and sensory gating in mice [15].
Interestingly, the SK3 channel is considered a potential thera-
peutic target for reducing inflammation-mediated acute cen-
tral nervous system damage as well as diseases/disorders in-
volving neuron hyper-excitability [16].

A lack of pharmacological agents specific targeting SK3
has mandated the use of a genetic strategy to study the

function of this protein. Deignan et al. [17] described SK3
constitutive null mice (SK3-KO) that show a selective impact
of SK3 channels on both action potential frequency and
timing in dopaminergic neurons. Recently, the same group
[18] created a line of SK3 conditional, overexpressing mice
(SK3-T/T) through insertion of a doxycycline-sensitive gene
switch that permits experimental regulation of SK3 expression
while retaining normal SK3 promoter function. Such SK3-T/T
mice exhibit increased extracellular striatal dopamine, en-
hanced hippocampal serotonin release, and reduced hippo-
campal brain-derived neurotrophic factor (BDNF) expression
[7, 8]. In the SK3-T/Tmouse line, the transcription of the SK3
channel is reversibly turned off in the presence of the antibi-
otic doxycycline. Doxycycline at doses [19, 20] used to switch
off gene expression is neuroprotective [21] in vitro and in vivo
[22–26],

Our aim was to further investigate how SK3 channel ex-
pression affects some functions in the central nervous system.
For our study, we utilized the SK3 channel overexpressing
mice (SK3-T/T [18]), the SK3 constitutive null mice (SK3-
KO [17]) and the corresponding wild-type animals (WT).
Overexpression of SK3 channel was achieved by maintaining
the SK3-T/T mice without doxycycline for several genera-
tions. We performed additional behavioral examination and
subsequently, and we carried out a detailed macro- and
micro-anatomical study in selected regions of the brain.

The results of the study reported here revealed a bilateral
reduction in the hippocampal area of the brain of the SK3-T/T
mice and additional neurophysiological deficits. We have also
been able to delineate unique molecular changes associated
with the SK3-T/T mouse brain neurotransmitter systems.

Materials and Methods

Animals

The local Animal Ethics Committee approved all experiments
(No. AZ 33.9-42502-04-10/0314) and performed according to
German law. The SK3 conditionally overexpressing mice [18]
and the SK3 constitutive null (knockout) mice [17] were kind-
ly provided by John Adelman and Chris Bond. The SK3 over-
expressing allele is referred to as BT^ in the following text and
homozygotes are indicated as BT/T.^ The SK3 null allele is
referred to as B-Bin the following text and homozygotes are
indicated as BKO.^ Adult (8–12 weeks) wild-type (WT), het-
erozygous, and homozygous littermates of both mouse lines
were used for all analyses, with the exception of the whole-
cell patch clamp recordings, which were taken from CA1
neurons of WT and T/T mice at 30 to 40 days of age.

T/T mice never received doxycycline and these untreated
animals show overexpression of the SK3 channel protein
throughout development. Only mice, which were referred to
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as BT/T + DOX^, received doxycycline via food pellets at a
dose of 200 mg/kg doxycycline (SSNIFF GmbH, Soest, Ger-
many (www.ssniff.de)); mouse parents were fed with
doxycycline 2 weeks before breeding and during the time
they were housed together. The mother received doxycycline
food until the pups were weaned. Thereafter, the pups
received doxycycline until sacrifice.

Behavioral Study

Male WT, SK3-T/T, and SK3-KO littermates (8–12 animals/
genotype) were exposed at the age of 2 months to the novel
object recognition (NOR) behavioral test.

The NOR test was carried out in a circular acrylic glass
arena (40-cm diameter and 40-cm height). One day before
the experiment, each animal was subjected to a 15-min habit-
uation session in the presence of two identical objects. On the
experimental day, animals were subjected to two trials spaced
by a 1-h interval. During the first trial (acquisition trial, T1),
the animals were placed in the arena containing two identical
objects for 10 min. For the second trial (test trial, T2), animals
were placed back in the arena for 5 min where one of the
objects originally presented in the T1 had been replaced by
an unknown object (novel object). Behavior was recorded on
video for blind scoring of object exploration. Object explora-
tion was defined by: animal licking, sniffing, or touching the
object with the forepaws while sniffing. The familiar and nov-
el objects were about 15-cm high, too heavy to be displaced
by the animals, but different in shape, color, and texture. Rec-
ognition memory was assessed using the discrimination index
(discrimination index = (novel − familiar/novel + familiar)),
corresponding to the difference between the time exploring
the novel and the familiar object, corrected for total time ex-
ploring both objects [27].

Electrophysiological Study

Acute Brain Slice Preparation The animals were anesthe-
tized with isoflurane and brains were quickly removed and
transferred into ice-cold buffer containing the following
(mM): choline chloride (110), NaHCO3 (25), D-glucose
(25), Sodium ascorbate (11.6), sodium pyruvate (3.1),
KCl (2.5), NaH2PO4 (1.25), MgSO4 (7), and CaCl2 (0.5).
Coronal slices (350 μm thickness) of whole brain contain-
ing the hippocampus were prepared using Leica VT 1200s
Vibroslicer and were immersed in artificial cerebrospinal
fluid (ACSF) containing (mM): NaCl (126), KCl (3),
NaH2PO4 (1.2), NaHCO3 (25), glucose (15), MgCl2 (1.1),
and CaCl2 (2) and continuously bubbled with carbogen
(95 % O2, 5 % CO2). The slices were allowed to recover
for 1 h before recording. Afterwards, they were transferred
to a submerged chamber and continuously superfused (flow
rate of 2–3 ml/min) with ACSF at room temperature.

Electrophysiology Whole-cell patch clamp recording (hold-
ing potential, Vh =−70 mV) were made from CA1 neurons of
WT (n=7) and SK3-T/T (n=11) mice of 30 to 40 days of age,
under an upright microscope (BX51, Olympus Optical, To-
kyo, Japan) equipped with a 40× water-immersion objective
and infrared differential interference contrast (IR DIC) illumi-
nation. All experiments were performed in the presence of
picrotoxin (50 μM) to inhibit GABAA receptors. Baseline
stimulation (10 min) was performed at 0.033 Hz with pulses
of 0.1 ms width and intensity ranging from 20 to 50 μA. LTP
was evoked by a Bpairing protocol^ consisting of a single
100 Hz tetanus, accompanied by a switch of the Vh to
−10 mV for 1 s, after which the EPSCs were recorded for
further 60 min. For patch clamping, borosilicate pipettes of
3–4 MΩ resistance were filled with a solution containing
(mM): K-gluconate (110), KCl (5), HEPES (50), EGTA
(0.005), MgSO4 (4), ATP (4), GTP (0.2), phosphocreatine
(9); pH 7.4, 290–300 mOsm/l. Whole-cell currents (EPSCs)
were recorded using an EPC 10 amplifier (HEKA Elektronik,
Lambrecht, Germany). EPSCs were evoked by stimulating the
Schaffer collateral inputs to CA1 neurons using a Teflon-
coated platinum electrode placed in the stratum radiatum at a
lateral distance of 70–100μm.Currents were low-pass filtered
at 2.5 kHz and sampled at 10 kHz. Series resistance ranged
from 10 to18 MΩ and was not compensated. Neurons show-
ing more than 10% fluctuation in series resistance during LTP
measurements were discarded from the analysis.

Morphological Study

MicroCT Imaging SystemBrains (7 animals/genotype) were
prepared using an adapted phosphotungstic acid (PTA) stain-
ing protocol originally described by Metscher et al. [28] and
embedded in pairs in 1 % agarose gel to avoid alterations
during the imaging session. Samples were imaged using an
eXplore Locus SP bench-top microCT (GE Healthcare, Fair-
field, USA) operated with the following parameters: 50 kVp
tube voltage, 150 μA tube current, and 1800 angular projec-
tion within a full rotation. For each single sample, a 3D data
set was reconstructed with an isotropic voxel size of 16 μm.
On virtual coronal cross-sections at the position of Bregma
−1.70 mm, the combined hippocampus ventricle area
(HV.Area) as well as the ratio of the hippocampus area to
HV.Area (H.Ratio) were measured using the 3D rendering
and analysis software Scry (v5, Kuchel and Sautter GbR).
Due to the high contrast provided by the PTA staining, the
total brain volume was assessed using a threshold-based seg-
mentation to separate the brain tissue from the agarose gel. In
order to account for partial volume effects, the arithmetic
mean between the average attenuation value of the brain and
the agarose gel was chosen as the threshold. To negate any
influence of the different sizes of the analyzed mice, the tibia
length (TL) was used as a reference and measured using the
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same microCT. Therefore, the HV.Area was normalized by
TL^2 and B.Vol by TL^3. H.Ratio that is already size inde-
pendent does not require normalization. Finally, to facilitate
the presentation of the results, the values are expressed as ratio
to the mean value of the respective measurements of the WT
control group. Therefore, meanWT is always 1 and the graphs
display the ratio to this base value.

Molecular Study

For immunohistochemistry (4 animals/genotype), quantitative
RT-PCR analysis (3–7 animals/genotype), and PCR array (4
animals/genotype), brain tissues were dissected and analyzed.

Immunohistochemistry The animals were deeply anesthe-
tized by intraperitoneal injection of ketamine and xylazine
and transcardially perfused with 30 ml of PBS, followed by
30 ml of PBS with 4 % paraformaldehyde (PFA) (Sigma-Al-
drich, St. Louis, USA), pH 7.4. Brain tissues were carefully
dissected, postfixed overnight with 4 % PFA at 4 °C, and cut
in a vibratome (VT1000S; Leica, Wetzlar, Germany; 30-μm
sections) according to Lazzarini et al. [21]. For NeuN immu-
nostaining, sections were incubated using mouse monoclonal
anti-NeuN (1:1000; Millipore, Billerica, USA). Species-
specific secondary biotinylated antibody IgG (1:500; Vector,
Burlingname, USA) was used. After incubation with the avi-
din–biotinylated horseradish peroxidase complex ABC (Vec-
tor), the immunocomplex was visualized by the substrate 3,3′-
diaminobenzidine tetrahydrochloride (DAB, 1 mg/ml; Sigma-
Aldrich). Bright field images were obtained with an Axiovert
200 M microscope (Zeiss, Oberkochen, Germany).

Quantitative RT-PCR of DRD1A and DRD2 The animals
were sacrificed by CO2 inhalation and subsequently de-
capitated. Total RNA from brain regions was obtained
as described by Martin et al. [29]. The relative abundance
of dopamine (DA) receptor type 1 (DRD1A) and DA
receptor type 2 (DRD2) transcripts in frontal cortex, dor-
sal and ventral striatum, hippocampus, mesencephalon,
and amygdala of mouse brain were studied by quantitative
RT-PCR. The Ct value of these target genes was normal-
ized to the reference genes hypoxanthine guanine
pho s pho r i b o s y l t r a n s f e r a s e 1 (HPRT1 ) a n d
hydroxymethylbilane synthase (HMBS). For quantifying
mRNA expression by real-time PCR, the following frag-
ments were amplified: nt 134–233 from sequence
NM_013556 detected with the mHPRT1 probe
( 5 ′ - ( F am ) -CAGCGTCGTGATTAGCGATGATG
AACCAGG-(Tamra)-3′); nt 476–587 from sequence
NM_013551 detected with the mHMBS probe
(5′-(FAM)-ACTATTGGAGCCATCTGCAAACGGGA
-(Tamra)-3′); nt 1576–1675 from sequence NM_010076
detected with the mDRD1A probe (5′-(Fam)-CAACAA

CAACGGGGCTGTGATGTTTTCCA-(Tamra)-3′); nt
607–706 from sequence NM_010077 detected with the
mDRD2 probe (5 ′-(Fam)-CTCTTTGGACTCAAC
AACACAGACCAGA-(Tamra)-3′).

Conditions for PCR were 2 min at 50 °C, 10 min at 95 °C,
15 s at 95 °C, 15 s at 56 °C, and 1 min at 60 °C (50 cycles).

PCR Array of Dopamine and Serotonin (5HT) and Gluta-
mate and Gamma-Aminobutyric Acid Pathways qPCR
was performed using ready-to-use mouse DA/serotonin
(5HT) and gamma-aminobutyric acid (GABA)/glutamate
(GLU) pathway RT2 Profiler PCR array (Qiagen/
SABiosciences, Hilden, Germany; Cat. No. PAMM-158Z
and PAMM-152Z) containing primers for 84 target and 5
housekeeping genes and controls for RT and PCR reactions.
cDNA isolated from hippocampus was applied to these com-
mercially available plates.

Statistical Analysis

Behavioral Data The data for the NOR test were normally
distributed and permitted two-way multivariate analysis of
variance for parametric test. Therefore, NOR was analyzed
by two-way multivariate analysis of variance (MANOVA)
with the genotype as the independent factor. Bonferroni post
hoc test was used as indicated to specify differences revealed
by significant MANOVAs. P<0.05 was considered signifi-
cant. Statistical behavior analysis was performed using the
SPSS v.8.0 software.

Electrophysiological Data Data points were normalized to
the mean EPSC amplitude during baseline sampling to create
time kinetics graphs. Results are presented as mean±SEM.
Representative EPSCs are averages of five consecutive traces.
LTP was calculated as the mean of normalized EPSC ampli-
tudes during the last 5 min of recording of individual neurons.
Statistical comparison was achieved using the Student’s t test.

MicroCT The difference of the combined hippocampus ven-
tricle area (HV.Area), the ratio of the hippocampus area to
HV.Area (H.Ratio) and the total brain volume were analyzed
using a one-way ANOVA implemented in the statistic soft-
ware PAST [30]. P<0.05 was considered significant.

Immunohistochemistry Analysis was performed using inde-
pendent t test for parametric data comparing WT and T/T
animal groups. P<0.05 was considered significant.

RT-PCR The differences in the normalized mRNA content
were analyzed by independent t test for parametric data com-
paring the wild-type group with the transgenic mouse group.
P<0.05 was considered significant.
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PCR Array Data were analyzed using the manufacturer
(Qiagen/SABiosciences) web-based software (http://
pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php).

Results

Cognitive/Memory Deficits in SK3-T/T Mice

The overexpression and absence, respectively, of KCNN3
mRNA or SK3 protein were confirmed in all T/Tand KOmice
by RT-PCR and Western blot (data not shown).

In experiments to address the cognitive consequences of
SK3 overexpression and deficiency, we used the SK3-T/T
and SK3-KO mice, respectively. Grube et al. [10] and
Jacobsen et al. [7, 8] have shown a role of the KCNN3 gene
and the SK3 potassium channel in cognitive function.

SK3-KO and WT mice displayed the expected [31] prefer-
ence in the novel object recognition test for the novel object in
the retention trial (results not shown).

In contrast, SK3-T/T mice failed to show novel object pref-
erence (two-wayMANOVA, F(2,26)=48.96; Bonferroni test,
*P<0.05; Fig. 1a), confirming a cognitive impairment.

The results presented above support converging evidence
that SK3 channels regulate cellular mechanisms of memory
encoding [32].

Reduced Long-Term Potentiation in the CA1
Hippocampus of SK3-T/T Mice

Elevated expression of SK3 channel in hippocampi of aged
mice is known to contribute to reduced long-term potentiation
[9] and gene-silencing of SK3 resulting in short-term memory
problems [7, 8].

To analyze functional deficits in synaptic transmission, we
prepared hippocampal slices of WT and T/T mice of 30 to
40 days of age.Whole-cell patch clamp recordings were made
from CA1 neurons.

CA1 neurons from WT had a resting membrane potential
(Vm) of −72.3±0.4 mV, not significantly different from the
T/T CA1 neurons (−72.0 ± 0.3 mV; n= 26, P= 0.61, two-
sample t test). WT and T/T CA1 neurons also displayed sim-
ilar input resistance (68.2±1.5 and 63.0±1.9 MΩ, respective-
ly, n=20, P=0.09, two sample t test).

SK3-T/T mice presented with remarkable LTP deficits
(Fig. 1bI, bII). A brief stimulus consisting of 100 Hz tetanus
and simultaneous voltage step to −10 mV for 1 s at 0 min
[Fig. 1bII, indicated by an arrow] induced a large LTP (4.37
±0.05 times baseline (P<0.0001, single-sample t test) stable
for 60 min (longest period recorded) in WT animals (open
circles). SK3-T/T animals in contrast presented a LTP two
times smaller (closed circles; 1.93±0.06 times of baseline,
P<0.0001, single-sample t test).

Morphological Changes in the Brain of SK3-T/T Mice

The dissection of brain regions for qRT-PCR analysis
revealed that T/T mice show dramatic brain deformity.
Careful observation indicated that SK3 overexpressing
T/T mice exhibit bilateral hippocampal shrinkage (more
than 50 %), mostly in the rostral part of the brain pro-
ducing an outsized lateral ventricle (Fig. 2a). The hip-
pocampus was replaced by a large cavity contiguous
with the ventricular system.

Fig. 1 T/T mice show cognitive and memory impairments and reduced
LTP. a Behavioral NOR test was performed in independent groups of
male WT (n = 8–12), T/T (n = 8–12), and KO (n = 8–12) littermates.
T/T presents less discrimination index (*P < 0.05) than WT and KO
mice. Statistical analysis was performed using two-way MANOVAwith
Bonferroni test for NOR. b LTP of CA1 pyramidal neurons from WT
(n = 7) and age matched T/T (n = 11) mice. (I) Representative EPSCs
under control conditions (grey) and during LTP (black) from WT and
T/T mice. Traces are averages of five consecutive sweeps. Stimulus
artifacts are truncated for clarity. (II) Time kinetics of normalized EPSC
amplitudes of CA1 neurons fromWTand T/Tmice. Data points from −10
to 0 min represent baseline amplitudes. Initial stimulations of Schaffer
collateral afferents lasted 10 min to obtain baseline EPSC amplitude of
~100 pA. The pairing protocol to induce LTP was applied at the same
current intensity as the baseline stimulation. A brief stimulus consisting of
100 Hz tetanus and simultaneous voltage step to 0 mV for 1 s at 0 min
(indicated by a black arrow) induced a larger LTP (4.37 ± 0.05 times of
baseline (P < 0.0001, single-sample t test) that was stable for at least
60 min (longest period recorded) in WT mice (open circles) compared
to T/T. T/T mice (closed circles) have significant less LTP (1.93 ± 0.06
times of baseline, P< 0.0001, single-sample t test)
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In order to analyze if the observed hippocampal
shrinkage was a product of the inserted doxycycline-
sensitive gene switch, we fed a group of T/T mice with
dietary doxycycline (group T/T + DOX) during embryo-
genesis to adulthood. This largely abolished channel ex-
pression [18] and restored the hippocampus to normal
size (Fig. 2a) suggesting that the morphological changes
were dependent on SK3 overexpression. Indeed, no
morphological changes were detected in SK3 knockout
(KO) mice (Fig. 2a).

Microcomputed tomography (microCT) analysis con-
firmed the reduction of the hippocampal area (H.Ratio;
one-way ANOVA, *P< 0.05) observed through the ana-
tomical dissection in the T/T mice compared to the oth-
er groups (Fig. 2bI, bII, cI; as shown in the Supplemen-
tary Movies 1a and b (Online Resource)). There were
no differences in either of the combined hippocampus
plus ventricle area (HV.Area) (Fig. 2cII) or the brain
volume between T/T and WT mice (Fig. 2cIII). Struc-
tural changes did not result from differences in overall
body size because the measured tibia length did not

show differences between groups. There was a small
increase in the brain volume of KO mice when com-
pared with the WT littermates (Fig. 2cIII).

Cellular Characterization of the Hippocampal Formation
of SK3-T/T Mice

Analysis of hippocampal neuronal cytoarchitecture by
NeuN staining revealed well-defined layers in the entorhi-
nal cortex and in the cornu ammonis (CA) of control ani-
mals, whereas somas and axon hillocks showed a columnar
and parallel organization, respectively (Fig. 3a, b). In com-
parison, analysis of T/T mice hippocampi revealed a much
less strict cellular organization with dispersed neurons on
either side of the pyramidal cellular layer. Interruptions in
the neuronal layer continuity [white arrow in Fig. 3a] were
observed in the CA1. The cells of the pyramidal layer in
CA1 were less densely packed and the columns were less
obvious (Fig. 3a, b).

Neuronal density was calculated as the number of labeled
NeuN-positive neurons divided by the area (10,000 μm2) of

Fig. 2 SK3 channel overexpression induces morphological changes in
hippocampus. aBrain coronal sections (vibratome, 30μm) ofWT (n = 5),
T/T (n = 5), doxycycline treated T/T (T/T + DOX, n= 5), and KO (n= 5)
mice. Four brain levels were chosen (Bregma −1.34 to −2.92 mm) for
hematoxylin-eosin staining analysis. Simple observation reveals a
marked decrease of the hippocampus size and an enlargement of the
lateral ventricles (Bregma −1.34, −1.70, and −2.46 mm) with no
obvious changes at Bregma −2.92 mm. WT, T/T + DOX, and KO mice
show no hippocampal shrinkage. Scale bar, 1 mm. b, cMicroCTanalysis
of WT (n = 7), T/T (n= 7), and KO (n= 7; C) mice. b Three-dimensional
(3D) rendering representation of a stained WT and T/T mouse brain with
rostral-dorsal (I) and dorsal (II) view scanned with the eXplore Locus SP
bench-top microCT. Hippocampal region and lateral ventricle were
segmented separately using a region-growing algorithm and are
displayed in red (hippocampus) and blue (ventricles), respectively. The

brain surface is displayed semi-transparent in grey. Whereas the
combined structure of ventricle and hippocampus appears to have the
same volume in both WT and T/T samples, the ventricles are clearly
enlarged and therefore the hippocampus shows shrinkage in the T/T
mouse brain. Scale bars, 3 mm. c On virtual coronal cross sections at
the position of XYZ, the ratio of the hippocampus area to the combined
hippocampus plus ventricle area (HV.Area; H.Ratio, I), the HV.Area (II)
as well as the brain volume (III) were measured using the 3D rendering
and analysis software Scry (v5, Kuchel and Sautter GbR). The analyses
confirmed the reduction of hippocampal area (H.Ratio) in the T/T group
compared to the other groups (I). No differences in the HV.Area were
found (II). The brain volume of KOmice was slightly increased (III). The
values are expressed as ratio to the mean value of the respective measure
of the WT control group (one-way ANOVA, *P< 0.05)
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interest. The number of neurons decreased in both CA1 and
CA3 in rostral hippocampi (Bregma −1.82 mm) of T/T mice
(Fig. 3c; independent t test, *P<0.05), whereas in the caudal
area (Bregma −3.40 mm), no differences were found com-
pared to WT (Fig. 3d).

Out of 60 T/T animals analyzed, two individuals did not
show evident hippocampal shrinkage. Interestingly, these an-
imals still exhibited the neuronal loss and disruption in the CA
layer (data not shown).

Molecular Alterations in the Brain of SK3-T/T Mice

Mutations in some ion channels known to regulate do-
paminergic neuron physiology have been linked to

several central nervous system illnesses [33–37]. Major
hypotheses link alterations of dopamine, serotonin
(5HT), glutamate (GLU), gamma-aminobutyric acid
(GABA), and calcium pathways with known risk-
associated genes [38].

We performed qRT-PCR focused on dopamine receptors
D1 and D2 in different brain regions of T/T, KO, and WT
mice. cDNA from the frontal cortex, dorsal, and ventral
striatum, hippocampus, mesencephalon, and amygdala
was analyzed using specific TaqMan probes to determine
DRD1A and DRD2 expression levels. There was an upreg-
ulation of DA receptors DRD1A and DRD2 in the frontal
cortex and dorsal striatum and of DRD2 in the mesenceph-
alon in T/T mice (Fig. 4a, b; independent t test, *P< 0.05).

Fig. 3 T/T mice show neuronal loss and disorganized neurons in the
CA1 and CA3 region. a, b Micrographs of neuronal nuclei (NeuN)-
positive cells in subregions of hippocampus (CA1, CA3, DG) from
rostral (a) and caudal (b) hippocampus of WT (n= 4) and T/T (n = 4)
mice. Insets show magnifications of stained granule neurons in dentate
gyrus (DG) and pyramidal neurons in Ammon’s horn CA1 and CA3.
There are heterotopias (misplaced neurons) and cell discontinuities
(disruption in the cornu ammonis [CA] layers) indicated by a white
arrow (a, T/T-CA1). There were dispersed NeuN-positive neurons on

all sides of the CA1 cellular layer. The cells of the pyramidal layer in
rostral CA1 are less densely packed and the column organization is less
obvious. Scale bars, 0.5 mm in a, 1 mm in b; insets, 50 μm in a and b. c,
d Quantifications of NeuN-positive cells in rostral (c) and caudal (d)
hippocampus are shown as the normalized average and SDs of three
independent replicates. T/T mice show reduced amount of NeuN-
positive cells in both CA1 and CA3 of rostral hippocampus (Bregma
−1.82 mm; independent t test, *P< 0.05). Values represent number of
neurons per 10,000 μm2 (mean ± SEM)
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In the case of KO mice, we did not find any difference
compared to WT (Fig. 4c, d).

Molecular Alterations in the Hippocampus of SK3-T/T
and SK3-KO Mice

We further performed two PCR array analyses in the hippo-
campus of SK3-T/T mice exploring the DA/5HT and the
GABA/GLU pathways.

The results of the DA and 5HT pathways analysis in SK3-
T/T indicated a strong upregulation of the thymoma viral
proto-oncogene 3 (AKT3), the glycogen synthase kinase 3
alpha (GSK3A), and the 5HT2A receptor (HTR2A) genes
(Fig. 5a).

The GABA and GLU pathways analysis in SK3-T/T
showed a major increase in mRNA expression of the
GABA-A receptor subunit beta 3 (GABRB3), the ionotropic
glutamate receptor AMPA2 (alpha 2-GRIA2), and the solute
carrier family 1 (glial high-affinity glutamate transporter)
member 2 (SLC1A2) (Fig. 5b).

There was a consistent increase in the abundance of mRNA
encoding Alzheimer’s disease amyloid precursor protein
(APP) in T/T mice in both arrays (Fig. 5a, b).

The genes of the DA/5HT or GABA/GLU pathways that
we analyzed above also showed highly upregulated expres-
sion in the hippocampus of T/T mice (Fig. 5a, b), but showed
no prominent expression changes in the hippocampus of KO
in comparison to WT mice (Fig. 5c, d). The only exception
was the gene AKT3 that showed a similar upregulation in
comparison to T/T mice and GABRB3, which was slightly
increased in the hippocampus of KO mice (Fig. 5c, d).

Discussion

In this study, we unexpectedly discovered a severe decrease in
the size of hippocampal formation in mice as a result of SK3
potassium channel overexpression. In addition, in SK3-T/T
mice there was a neuronal cytoarchitecture modification in
the CA layers of hippocampus with a decrease and

Fig. 4 T/T mice exhibit gene
expression changes in the
dopamine receptors type 1a and 2
in different brain regions. a, b
qRT-PCR analysis of DRD1A (a)
and DRD2 (b) in frontal cortex
(FC), dorsal (DS), and ventral
striatum (VS), hippocampus (H),
mesencephalon (M), and
amygdala (A) of WT (n = 7) and
T/T (n= 7) mice. There is an
upregulation of DRD1A in FC
and DS and of DRD2 in FC, DS,
and M of T/T mice in comparison
to WT (independent t test,
*P< 0.05). c, d qRT-PCR
analysis ofDRD1A (c) andDRD2
(d) in frontal cortex (FC), dorsal
(DS), and ventral striatum (VS),
hippocampus (H),
mesencephalon (M), and
amygdala (A) of WT (n = 7) and
KO (n= 7) mice. There are no
differences in mRNA expression
ofDRD1A andDRD2 in KOmice
in comparison to WT
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disorganization of neurons in CA1/CA3 hippocampal sub-
fields. SK3-T/T mice also presented with LTP deficits in the
hippocampus and failed to show novel object preference,
which corroborates indications of an impairment of recogni-
tion memory, a subcategory of declarative memory. Declara-
tive memory impairment is a known behavioral consequence
of hippocampal damage [39].

Bond et al. [18] did not report the hippocampal anomaly
although their doxycycline-induced conditional SK3-deficient
adult mice were kept without doxycycline for at least 5 days in
order to overexpress the SK3 channel. In our study, the con-
ditional overexpressing SK3 mouse lineage did not receive
doxycycline at all during embryogenesis, through develop-
ment to adulthood. Therefore, the discontinuation or no ad-
ministration of doxycycline in different time periods and at
different stages of development may explain the differences
between studies. Otherwise, it seems surprising that mice part-
ly lacking the hippocampus survive and also do not suffer
from dramaticmemory deficiency. This phenomenonwas also
observed in humans whose hippocampi were almost entirely
removed by surgery in early attempts to cure severe epilepsy.
Such patients survived and mainly showed selective memory
deficits [40].

The described features corroborate that SK3-T/T mice ex-
hibit a profile of memory impairments. Previous results have
also shown that increased SK3 channel expression in the hip-
pocampus of old mice contributes to the age-dependent de-
cline in learning, memory, and synaptic plasticity [9]. SK
channel activation by the compound CyPPA (cyclohexyl-
[2-(3,5-dimethyl-pyrazol-1-yl)-6-methyl-pyrimidin-4-yl]-
amine, a positive modulator of the small conductance Ca2+-
activated K+ channels SK2 and SK3) impairs learning and
LTP [41]. Conversely, blockage of SK channels with apamin
during a 5-Hz burst of tetanus facilitated the induction of LTP
in the CA1 area [42]. Apamin facilitates long-term potentia-
tion and encoding of memory traces [6, 43, 44].

Unpublished results from our laboratory suggest that the
almost complete loss of hippocampal structures in adult SK3-
T/T mice may be due to an early developmental defect before
birth. SK3-T/T mice have been shown to exhibit an intrauter-
ine growth-restricted phenotype [45]. As gestation progressed
in T/Tmice, litter sizes were reduced bymore than one half by
gestational days 13–14 and often exhibited fetal demise. This
suggests that SK3 expression affects fetal development [45].
SK3 channel shows major expression changes during the peri-
natal and postnatal period compared with the adult brain

Fig. 5 T/Tmice exhibit hippocampal gene expression changes in the DA
and 5HT and GABA and GLU pathways. a, b Expression analysis in the
hippocampus of T/T (n= 4) versus WT (n = 4) mice using a PCR array of
the DA/5HT (a) and of the GABA/GLU (b) pathways reveals an
upregulation of (a) AKT3, GSK3A, and HTR2A and (b) GABRB3,
GRIA2, and SLC1A2 mRNA. There is also an increase in the
abundance of APP mRNA in T/T mice in both neurotransmitter

pathways. c, d Expression analysis in the hippocampus of KO (n = 4)
versus WT (n= 4) mice using a PCR array of the DA/5HT (c) and of
the GABA/GLU (d) pathways reveals an upregulation of (c) AKT3 and
(d) GABRB3 mRNA. Note that in the hippocampus of KO mice, AKT3
shows a similar upregulation and GABRB3 is slightly increased in
comparison to T/T mice

1086 Mol Neurobiol (2017) 54:1078–1091



regions [4, 46]. High levels of SK3 mRNAwere observed in
the subventricular zone up to embryonic days E19–E21 and in
the intermediate zone up to E17 [46]. Bayer and Altman [47]
have shown that the major hippocampal neuronal populations
of the CA1 and CA3 subfields are generated between E15 and
E20, when SK3 expression is high. It shows an evident paral-
lelism of SK3 expression and cell organization in the hippo-
campal formation during embryogenesis.

Bates [48] describes by what mechanism could ion channel
function contributes to the proper and timely migration of
cells. McFerrin and Sontheimer [49] suggest that different
currents (localized K+ and Cl−) could be important for cellular
migration by helping the cell change shape as its volume in-
creases at the leading edge and contracts at the trailing edge.
Similarly, the disruption of the chlorideClC-3 channel in mice
resulted in a progressive degeneration of hippocampal forma-
tion [50, 51] that starts around postnatal day P12 and led to
near complete loss of the hippocampus in the adult Clcn-3
knockout mice [50]. Alternatively, SK3 excess could induce
structural changes in hippocampal neurons during late phase
of neuronal differentiation. SK3 channels are located in both
the pre- and postsynaptic compartments of hippocampal py-
ramidal neurons [52], as a complex with Abelson interacting
protein 1 (Abi-1) and the neural Wiskott Aldrich Syndrome
Protein (nWASP) [53]. Furthermore, SK channels could have
a protective role by counteracting calcium mobilization, cen-
tral to excitotoxic injury. Persistent activation of SK channels
might nonetheless tonically hyperpolarize neurons and reduce
their spontaneous activity to induce the observed hippocam-
pus deformation. In summary, it is tempting therefore to

speculate that SK3 channel overexpression may regulate, di-
rectly or indirectly, the hippocampal formation development
and function.

During our studies on the impact of SK3 overexpression on
major brain neurotransmitter pathways, we observed amarked
increase of DA receptors DRD1A and DRD2 in the frontal
cortex and dorsal striatum and of DRD2 in the mesencepha-
lon. SK3 modulates spike frequency in DA neurons [2, 5, 54].
Dopaminergic neuronal dysfunction is a key early event in
Parkinson’s disease [2, 55] and in Huntington’s disease [56]
progression, and perturbations in DA signaling are also impli-
cated in the pathologies of attention-deficit hyperactivity dis-
order and schizophrenia.

Besides DA receptors, components of the DAergic/
5HTergic and GABAergic/GLUergic pathways whose ex-
pression is increased in the hippocampus of SK3-T/T mice
(see Table 1) have been linked to schizophrenia, Alzheimer’s
disease, epilepsy, or autism. Interestingly, we observed a ma-
jor increase of GABRB3 mRNA in the hippocampus of T/T
mice. Mutations in subunits of GABA receptors have been
frequently associated with epilepsy, autism, and other neuro-
psychiatric disorders [75, 76]. In postmortem brains of schizo-
phrenia patients, many changes in the GABAergic neural sys-
tem have been reported, including the increase in GABA-A
receptor expression [97], the decrease in GABA transporter
expression [98], and the decrease in activity and mRNA con-
tent of glutamic acid decarboxylase [99]. The loss of
GABAergic axons, which modulate hippocampal network ac-
tivities, is a component of the core feature of disease-memory
impairment [100]. SK3-T/T mice also showed a major

Table 1 Altered DA/5HT and GABA/GLU genes in mice overexpressing SK3 channels and selected references describing their involvement in
diseases

PCR array detected gene change Described function Alzheimer’s
disease

Schizophrenia Other diseases

AKT3
Thymoma viral proto-oncogene 3

Activation of the AKT system
is specifically associated with
hippocampal volume in first-episode schizophrenia.

No items found [57] [58, 59]

GSK3A
Glycogen synthase kinase 3 alpha

Regulates production of Alzheimer’s
disease amyloid-beta peptides.

[60–62] [63] [64, 65]

HTR2A
5-Hydroxytryptamine
(serotonin) receptor 2A

Belongs to the serotonin receptor family;
G protein-coupled receptor; mediates
the action of antipsychotic drugs.

[66, 67] [68, 69] [70]

GABRB3
Gamma-aminobutyric acid (GABA)-
A
receptor, subunit beta 3

Is one of the subunits of a multi-subunit
chloride channel that serves as the receptor
for GABA; a candidate gene for autism.

[71, 72] [73, 74] [75–78]

GRIA2
Ionotropic glutamate receptor AMPA2

Functions as ligand-activated cation channel. [79] [80] [81–83]

SLC1A2
Excitatory amino-acid transporter 2 or
solute carrier family 1 member 2

Clears the excitatory neurotransmitter
glutamate from the extracellular
space at synapses.

[84, 85] [86–88] [89, 90]

APP
Alzheimer’s disease amyloid beta
(A4) precursor protein

Is the main component of the amyloid plaques
found in the brains of patients with
Alzheimer’s disease.

[91, 92] [93, 94] [95, 96]

Mol Neurobiol (2017) 54:1078–1091 1087



increase of APP mRNA expression in the shrunken hippo-
campus. APP is a key protein associated with Alzheimer’s
disease and is involved in the migration of neuronal precursor
cells [101]. Patients with Alzheimer’s disease are character-
ized by a higher average rate of hippocampal volume loss than
healthy age-matched controls [102, 103]. Experimental
models of amnesia show that SK channel activity is implicated
in memory impairment [104]. It is already known that damage
arising from APP causes a subcellular redistribution of
disrupted-in-schizophrenia 1 protein (DISC1) in primary cor-
tical neurons, which in turn cannot properly migrate into the
cortical plate [93]. Therefore, we speculate that the observed
increase ofAPPmRNA in the SK3 overexpressingmice could
be a reason for the organizational disruption of hippocampal
layers.

In a more recent analysis of a schizophrenic samples, we
found an association between the long CAG repeats (which
reduce the SK3 potassium channel’s functioning) and better
cognitive performance in tasks that assessed the ability to
discriminate, select, and execute [10]. In addition, similar to
SK3-T/T mice, brain analysis from schizophrenia patients
have revealed hippocampal atrophy, neuron loss [105], re-
duced neural size [106], structural and histopathological alter-
ations such as dendritic changes in the pyramidal neurons
[107], and alteration of specific subtypes of interneurons
[108].

In conclusion, the findings of the present study lead us to
the hypothesis that the functional state of SK3 ion channels is
a factor in determining directly or indirectly, morphological,
molecular, and electrophysiological changes in the brain.
Based on the mRNA expansion profiles we observed, we
predict that transgenic mice that overexpress the murine SK3
gene may represent a research model for neuropsychiatric dis-
orders, even though the symptoms of most the diseases cannot
be exactly mirrored in mice. This potentially investigative
model is of particular interest because progress in the under-
standing of the role of the SK3 channel in brain disorders has
been limited due to the lack of specific SK3 antagonists and
agonists. Our data also demonstrates that pharmacological
modulation of SK3 could conceivably be beneficial for a
range of central nervous system disorders and, as such, sug-
gests that SK3 could represent a potential drug target.
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