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A B S T R A C T

A robust entry guidance law based on terminal sliding mode and second-order differentiator is designed for
trajectory tracking in this paper. The bank angle is regarded as the control variable. A novel nonlinear
compound controller is designed to make the system with the trajectory-tracking error and its rate as states be
input-to-state stable (ISS) with respect to uncertainties. The terminal sliding mode controller is designed to the
problem of entry guidance by using the second-order differentiator to estimate the total disturbances. The
proposed nonlinear compound control law by employing the second-order differentiator and the terminal
sliding mode controller, provide robustness, higher control precision. Also, simulation results are presented to
illustrate the effectiveness of the control strategy.

1. Introduction

Although further improvements in approach navigation will reduce
the landing ellipse, it is clear that closed-loop entry guidance will be
necessary to achieve landing accuracy on the order of 10 km from a
designated target. Several hundreds of kilometers may be covered by an
Mars entry vehicle before it lands, while a few tens of kilometers are
covered during descent, and usually there is the least possible lateral
motion during landing. This means that much of the vehicles landing
precision will first and foremost be affected by the state dispersion
accumulated during the entry phase, with only small remaining errors
that are recoverable during the descent and landing phases(see [1–5]).

For the entry phase of low Lift-to-Drag ratio vehicles, any closed
loop guidance system relies on the bank angle to provide active
trajectory control. Therefore, a bank angle program must be deter-
mined and actively implemented to achieve the desired targeting
performances. Generally, schemes for atmospheric entry guidance are
divided into major categories, i.e., a) reference trajectory tracking
methods and b) predictive trajectory planning methods(see [6–10]).

Recent years, there are some researches on control designs for Mars
lander with highly nonlinear characteristics using nonlinear control
techniques(see [11–14]). Some of the research results have been
achieved in the research of the atmospheric entry guidance and control
method of the Mars Lander (see [9,10,15–20]). In [15], a continuous

finite time sliding mode controller is designed for the trajectory
tracking control of the Martian atmosphere. Non singular terminal
sliding mode and finite time control law based on the super screw
algorithm. It is realized that the tracking error can converge to zero in
finite time. In [20], a multi sliding mode surface navigation method is
proposed to track the reference trajectory. But the algorithm does not
consider the uncertain disturbance. In the case of multiple constraints,
the proposed method is used to solve the problem of trajectory tracking
control of the whole state by using the Legendre spectral transform in
[21]. In addition to track a reference trajectory of ideas, most of the
resistance to tracking navigation method is need to drag velocity, which
for Martian atmospheric entry section of the lander, under the real
situation is hard to measure precisely [9,10]. In addition, the most
effective way to improve the accuracy of the landing point in the
complex Martian atmosphere is to ensure that the Mars Lander runs on
a predetermined reference trajectory throughout the atmosphere [22].
Then, the Mars Lander if Mars in the complex atmospheric environ-
ment, accurate tracking of preset atmospheric entry trajectory for Mars
mission critical guidance (see [23,24,15]). Therefore, this paper con-
siders the high speed to replace resistance speed as the feedback
information of the reference trajectory tracking control strategy.

The differential observer is proposed by the famous scholar Aire
Levant. Differential observer technique can accurately estimate the
perturbation (see [25,26]). A two order differential sliding mode
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observer is proposed for the mechanical system [27]. In [28], a sliding
mode controller based on the differential observer is designed to
achieve the missile's accurate interception. However, the use of the
differential observer to deal with the uncertainty and disturbance of the
Mars Lander system is relatively fewer. Moreover, the differential
observer is robust and accurate. Therefore, this paper will use the
differential observer to deal with the uncertainty and disturbance of the
Mars Lander system.

In this paper, the density uncertainty of the Martian atmosphere
and the lander gas dynamic uncertain parameters, initial state errors
and modeling errors based on non-singular full order terminal sliding
mode technique and the differential observer of the Mars Lander
atmosphere into the period of robust and high accurate trajectory
tracking control problem is discussed. Analysis of the atmospheric into
atmospheric density uncertainty, lander gas dynamic uncertain para-
meters, initial state errors and modeling errors mainly interference
effects, design the Mars Lander atmospheric entry trajectory tracking
control scheme, the Mars Lander in atmospheric entry the finite time
trajectory tracking control. Non-singular full order terminal sliding
mode observer to estimate the differential technology and methods,
design of anti- interference guidance and control methods compared
with the traditional control method of guidance in the aspect of anti-
jamming ability is more prominent. The proposed nonlinear compound
control law by employing the second-order differentiator provide
robustness, higher control precision.

The paper is organized as follows. The Mars entry longitudinal
guidance problem is formulated in Section 2. Terminal Sliding Mode
Control is presented in Section 3. A novel nonlinear compound
controller is presented in Section 4. Simulation results are presented
in Section 5 and the paper ends with the conclusion in Section 6.

2. Mars entry guidance problem

The equation of motion of an entry vehicle defined with respect to a
planet-fixed coordinate frame are
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where θ is the longitude, ϕ is the latitude, r is the distance from the
center of the planet to the vehicle center of Mars, ψ is the heading angle
with ψ = 0 as due east, V is the velocity and γ is the flight path angle. L
and D are the lift and drag accelerations, defined by

L ρSC
m

V= 1
2

L 2
(2)

D ρSC
m

V= 1
2

D 2
(3)

The drag and lift coefficients CD and CL are functions of the Mach
number, S is the reference area, m is the lander mass, and ρ is the
atmospheric density. The gravity is modeled as g = μ

r
M
2 , where μM is the

Mars gravitational parameter. The term Cγ and Cψ are the Coriolis
accelerations due to Mars rotation, and given as

C ω ψ ϕ= 2 cos cosγ p (4)

C ω γ ψ ϕ ϕ= 2 (tan sin cos − sin )ψ p (5)

where ωp is the planet angular rate. Parameters of the entry vehicle
dynamics are referred to (1) and given in Table 1.

The attitude control system uses small thrusters to rotate the

vehicle in the path and yaw axes, thus to respond to bank angle
commands from the guidance system. The control is the bank angle σ
and it is defined such that a positive value corresponds to banking to
the right. To account for limits in bank rate (20°/s) and bank
acceleration (5°/s2), a first order bank dynamics controller has been
implemented. Commanded bank acceleration is calculated using

σ σ σ
τ

˙ = −c
(6)

where σ is the current bank angle, σc is the commanded bank angle and
time constant τ of 1 s was chosen for the numerical results in this
paper. Then, limits are applied to both commanded bank acceleration
and commanded bank rate to obtain the executed bank.

Finally, the cosine of the bank angle is the parameter employed to
control the longitudinal motions. The overall goal is to design and test
our algorithm that generates a bank angle program that guides the
lander to the desired target point during the entry portion of the
descent.

3. Terminal sliding mode control

Here, the goal is to develop a novel non-linear guidance approach
for the Mars entry phase based on the application of recent advance-
ments in TSMC theory (see [29–31]). The overall objective is to derive
a guidance law (bank angle program) that is a) robust against
parameters uncertainties, and b) guarantees good targeting perfor-
mances at the end of the entry phase. The guidance model employed to
develop the terminal sliding mode guidance algorithm is longitudinal
descent model described by Eq. (1).

Let
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Here, rd is the desired distance from the center of the planet to the
vehicle center of Mars along the reference trajectory, which are a series
of values that are stored as a function of range or range-to-go.

Then, take the derivation of (7), we obtain:
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where, we denote
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where x θ ϕ r V γ ψ= ( , , , , , ).
Then, we can get

x x
x f x t g x t u
˙ =
˙ = ( , ) + ( , )
1 2

2

⎧⎨⎩ (10)

The task of Terminal Sliding Mode Control (TSMC) (see [33,34])
for nonlinear system (10) is to design a control strategy which induces
an ideal sliding-mode motion in the prescribed sliding-mode surface
and forces system (10) to the origin along the sliding-mode surface
asymptotically for TSMC. It is assumed that all constants are known, as
well as functions f x t( , ) and g x t( , ) in system (10), and all coordinates
are exactly measurable in real time.

Table 1
Parameters of Mars entry vehicle dynamics.

Parameters r0 (km) μM (m s/3 2) S(m2) ωp (rad/s)

Values 3387 4.284 12.8825 7.095e−5
Parameters CD (1) CL (1)
Values 1.4595 0.3515
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A terminal sliding mode variable for system (10) can be selected in
the following form, which has been proposed in (see [29]):

s x k sgn x x k sgn x x= ˙ + ( )| | + ( )| |α α
2 2 2 2 1 1 12 1 (11)

where k k,1 2 and α α,1 2 are constants. k k,1 2 can be selected such that the
polynomial k k p+1 2 , which corresponds to system (10) is Hurwitz, i.e.,
the eigenvalues of the polynomial are all in the left-half side of the
complex plane. α α,1 2 can be determined based on the following
conditions (see [29]):

α α α α
α

α= , =
2 −

, ∈ (1 − ϵ, 1), ϵ ∈ (0, 1)2 1 (12)

Once the ideal sliding-mode s=0 is established, the nonlinear
system (10) will behave in an identical fashion, namely

s x k sgn x x k sgn x x= ˙ + ( )| | + ( )| | = 0α α
2 2 2 2 1 1 12 1 (13)

If α α,1 2 in terminal sliding mode manifold (13) are selected using
(12) and k k,1 2 in (13) are determined to guarantee that the polynomial
k k p+1 2 is Hurwitz, which represents the establishment of the ideal
sliding-mode s=0 for system (10), can converge to its equilibrium point
x x x= [ , ] = [0, 0]T T

1 2 from any initial condition x (0) ≠ 0 along the
terminal sliding mode manifold s=0 in finite-time (see [34–37]).

4. Nonlinear compound controller

In this section, we will propose a nonlinear compound controller
design for Mars atmosphere entry trajectory tracking control problem.
Due to the great advances in nonlinear control theory, the second-order
differentiator based controller has become one of the most commonly
schemes in industrial applications. The second-order differentiator,
which has been developed in (see [25,26]), has the high efficiency in
accomplishing the nonlinear dynamic estimation.

Therefore, for solving trajectory tracking problem with Mars atmo-
spheric density uncertainty and lift-to-drag ratio disturbance existing
in the lander system, a terminal sliding mode controller can be
designed to force the state variables to converge to the reference
trajectory by compensating the disturbances via the second-order
differentiator.

4.1. Trajectory control concept

Now, consider system (10) containing parameter uncertainty in the
form of ρ ρ Δρ= +0 , L D L D Δ L D/ = ( / ) + ( / )0 , and ρ L D, ( / )0 0 are the
nominal Mars atmospheric density, lift-to-drag ratio, and Δρ, Δ L D( / )
denote the Mars atmospheric density uncertainty and lift-to-drag ratio

disturbance, respectively. Meanwhile, note that Δ L D Δ( / ) = ( )
V

V
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coefficients.
Hence, notice (2), we can get
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Thus, we consider the simplified system
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The partially known function d∼, which represents the system parameter
uncertainties and the external disturbances, is assumed to satisfy the
following condition: d l| | ≤ ,∼

d where ld is a bounded constant.

Remark 4.1. It can be seen that if there exists a dynamic state
feedback control law such that the solution of the closed-loop system
(18) is guaranteed x t x tlim [ ( ), ( )] = 0t→∞ 1 2 , Then, the tracking objective
can be achieved. Therefore, the reference trajectory tracking problem is
solved by the stabilization problem of the nonlinear system (14) which
contains both Mars atmospheric density uncertainty and lift-to-drag
ratio disturbance.

Remark 4.2. In this section, all the terms are considered sufficiently

smooth functions. ,SV γ
m

uSV γ
m

sin
2

cos
2

2 2
are both differentiable functions.

Meanwhile, Δρ, Δ L D( / ) are assumed to be differentiable disturbances.
In fact, Δρ, Δ L D( / ) can be approximated by differentiable functions,
when they are not differentiable. Thus, the total disturbances d∼ are
differentiable.

4.2. Preliminary

In this subsection, some important definitions and lemmas are
presented, which will serve as a basis for this study.

Definition 1. [32] Consider a nonlinear system in the form of

x f x f x R˙ = ( ), (0) = 0, ∈ n (19)

where f x U R( ): → n
0 is continuous on an open neighborhood U0 of the

origin x=0. The state of system is finite-time convergent to its origin
x=0, if for any initial condition x U∈ ⧹{0}0 , there exists a convergence
time T > 0, which is dependent on x0, such that every solution
x t x( ; ) = 00 of system (19) is defined with x t x U( ; ) = 0 ∈ ⧹{0}0 for
t T∈ [0; ) and satisfies x t xlim ( , ) = 0t T x→ ( ) 00 and x t x( , ) = 00 , for
t T x≥ ( ).0 Moreover, if the origin x=0 is asymptotically stable and
finite-time convergent in a neighborhood of the origin U U R⊆ ⊂ n

0 ,
then the origin x=0 of the system is (locally) finite-time stable. If
U R= n, system (19) is globally finite-time stable.

Assumption 1. The derivative of d∼ in system (18) is bounded:

d k| ˙| ≤∼
d (20)

where k > 0d is a constant.

Lemma 1. [32] Consider the nonlinear system described by Eq. (19).
Suppose that there is a continuously differentiable function
V x U R( ): → , and that there are real numbers k > 0 and a0 < < 1
and an open neighborhood U U⊂0 of the origin such that V(x) is
positive definite on U0 and that V x kV x x U˙ ( ) ≤ − ( ), ∈ ⧹{0}a

0 . Then, the
origin x=0 of system (19) is finite-time stable. Moreover, if T is the
convergence time, then T x V x( ) ≤ ( (0))

k a
a1

(1 − )
1− for all x (0) in some

open neighborhood of the origin. If U U R= = n
0 , the origin x=0 of

system (19) is globally finite-time stable.

Lemma 2. [33] (Input-to-State Stability Theorem, ISS Theorem)
Consider the following nonlinear system

x f x u t˙ = ( , , ) (21)

If the system x f x t˙ = ( , 0, ) is globally uniformly asymptotically stable,
and ulim = 0t→∞ , then the states of system (21) are asymptotically
convergent to zero, i.e., xlim = 0t→∞ .

Lemma 3. [25] Considering the closed-loop system (18) and the
formula (13), when f∼ and g∼ are sufficiently smooth functions, and d∼

are differentiable, the second-order differentiator proposed for the
estimate of the total disturbance d∼ take the form
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where z z,0 1 and z2 are the estimate of y d˙, ∼
and ḋ∼, respectively; K d≥ | ¨|∼

.

4.3. Controller design

With the disturbances of system d∼ estimated by the second-order
differentiator, using the TSMC algorithm, the proposed nonlinear
controller for low lift landers system (18) can be design as

u g x t u u u z f x t k sgn x x k sgn x x

u Tu νν k k η sgn s

= ( , ) ( + ) = − − ( , ) − ( )| | − ( )|
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α
d T
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1 2 1 1 2 2 2 1 1 1

2 2

2

1 (23)

where uD is the design controller of this paper; u (0) = 0; k k,1 2 and α α,1 2
are all constants, as defined in (13); kd is a constant defined in (20),
T η, are positive constants, kT are selected satisfy the following
condition:k Tl≥T d .
Remark 4.3. Note that the second formula z1 in (22) is most
important. It shows that z1 can estimate (or track) the total action of
the uncertain models and the external disturbances or the real-time
action of the system disturbances. As z1 is the estimation for the total
action of the unknown disturbances, in the feedback, z1 is used to
compensate for the disturbances.

In this subsection, the stability of the system (18) can be established
by the following theorem.
Theorem 1. Consider the system (18), control law (23), second-order
differentiator (22), there exist gains λ λ λ, ,0 1 2, such that the estimated

states z z z, ,0 1 2 converge into a residual set of the actual states y d d˙, , ˙∼ ∼

respectively, and the trajectory of the closed-loop system can be driven
onto the sliding surface in a finite time and finally converges to the
origin.
Proof. In order to examine stability of the system (18), one must
develop an expression for the second-order differentiator error
dynamic. Defining the second-order differentiator error

e z y
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The stability of second-order differentiator has been obtained by
selecting appropriate parameters λ λ λ, ,0 1 2, and K. According to

Lemma 3, z z,0 1 and z2 are the real time estimates of y d d˙, , ˙∼ ∼
. When

the observer is stable, the derivative of vector e e e[ ˙ , ˙ , ˙ ] = 0T
1 2 3 .

Having shown that the second-order differentiator error converges
into the residual set of zero, it remains to shown that the system states
converge to the origin in finite time.

Considering the Lyapunov function candidate with the terminal
sliding surface given by (13), the second-order differentiator obtained
by (22), we obtain

s x k sgn x x k sgn x x f x t g x t u k sgn x x

k sgn x x f x t u u k sgn x x k sgn x x

d z u e u

= ˙ + ( )| | + ( )| | = ( , ) + ( , ) + ( )|
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1 (28)

From (28) and (13), we can get

s e u= − + = 02 2 (29)

In addition, the solution of (23) is given by

u u t k k η
T

sgn s e k k η
T

sgn s= [ ( ) + + + ( )] − + + ( )T d T t t T d
2 2 0

( − )0
(30)

From (23) and (30), the following relationship under the condition
u (0) = 02 can be obtained:

u t u t k T| ( ) | ≤ | ( ) | ≤ /max T2 2 (31)

i.e. the following inequality will be kept forever:

T u t k| ( ) | ≤ T2 (32)

The following Lyapunov function is considered:

V s=
2

2

For terminal sliding mode manifold (13), its derivative with respect to
time t along system (10) can be obtained from (28) as follows:

s e u e Tu ν e Tu k k η sgn s˙ = − ˙ + ˙ = − ˙ − + = − ˙ − − ( + + ) ( )T d2 2 2 2 2 2 (33)

Hence,

V ss s e Tu k k η sgn s
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η s η s ηV
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− | | ≤ − | | = −

T d

T d d T

2 2

2 2 2 2
1
2 (34)

It has been shown that the second-order differentiator is stable and
z t( )2 converges into a residual set of d∼, which means ė2 converges into a
residual set of zero.

Appropriate T k k η, , ,d T can be selected such that V̇ < 0, when V is
out of a certain bounded region which contains equilibrium point.
Thus, it can be concluded that with the bounded motion around the
sliding surface, the state x of system (18) will converge into a
neighborhood of the origin, which implies state x is uniformly
ultimately bounded.

Remark 4.4. The system (18) can be made to converge using
Terminal sliding mode control methods [29]. However, in order to
suppress the uncertainty and disturbance, the control input may lead to
violent chattering which is normally undesirable in practice. Hence, the
second-order differentiator can be adopted here to make the total
disturbance estimated and compensated in the control input, which
implies the decrease of the chattering and control power.

Remark 4.5. Since the second-order differentiator cannot track the
signal completely in any practical systems, asymptotic stability is lost
and it can only guarantee the bounded motion about the sliding
surface. Therefore, we cannot analyze the stability of the dynamics of
the sliding mode that is restricted on the sliding surface. In (34) the
boundary layer of sliding surface is affected by the estimation error of
the second-order differentiator. Thus the parameter selecting of the
second-order differentiator is more important, since it not only
determines the performance of second-order differentiator estimating
the total disturbances, but also impacts the behavior of sliding surface.
More information about the parameter selecting for the second-order
differentiator can been seen in (see [25,26]) .

5. Simulation results

5.1. Numerical values of tracking control

In this paper, the model presented is based on the model of the
described in [20]: 1) a spherical gravitational field that accounts for
Mars non-flat surface; 2) a first order bank angle autopilot model that
models the dynamics as: σ̇ = .σ σ

τ
−c A time constant τ of 1 s was chosen

for these runs; 3) A Martian atmosphere as described by [2] was used
to compute the lift and drag accelerations as function of altitude and
velocity. Three cases of the atmospheric density disturbances are
considered. Case 1: Δρ =+ 30%; Case 2: Δρ =+ 50%; Case 3:
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Δρ =+ 70%. The Martian atmospheric density disturbances are shown
in Fig. 1.

The reference trajectory was created by running a nominal simula-
tion at a constant bank angle of 59.63° with the velocity heading not
allowed to change. This is similar to the method used by [38]. The
simulation is stopped once the lander reaches its desired altitude.

To evaluate the robustness of the proposed algorithm (23), a 1000-
run Monte Carlo study has been performed. The set of initial conditions
and guidance parameters that do not change from run to run for these
Monte Carlo runs are shown in Table 2. In this set of Monte Carlo
simulations, the parameters taken to perform the simulation come
largely from the MSL landers data.

As mentioned above, the entry guidance task is to deliver the lander
to the desire parachute deployment point, thus a termination logic of
the simulated entry should be proposed. According to the requirement
of the high landing altitude, hence, the parachute is deployed when the
altitude range 8.1–12 km, and the velocity of the vehicle is less than
450 m/s. Otherwise, when the altitude h=8.1 km, or the velocity
V=450 m/s, the parachute is deployed, whichever takes place first.

A 1000-run Monte Carlo study was performed to evaluate the
robustness of the proposed method in presence of the dispersions in
entry state and model errors. The drag and lift coefficients dispersions
are modeled as random Gaussian distributions as well as the entry state
dispersion, and their dispersions are ± 30%. Whereas, the density
dispersion is modeled as random multiplier factors, and the density
dispersion is ± 40%. The means and the standard deviations for the
initial state variables are shown in Table 3.

5.2. Comparisons results of two controllers

To make a fair comparison of the control performances(e.g. high-
precision and strong robustness), we consider the proposed control law
uD and [29] in the same Case 1.

The comparison results are shown in Figs. 2–9. And Figs. 2 and 3

show the reference and actual tracking states. Figs. 4 and 5 show
trajectory tracking errors between the current trajectory and the
reference trajectory. Figs. 6–9 show the results of the 1000-run
Monte Carlo analysis. The stopping condition for all runs is imple-
mented whenever the lander reaches an altitude of 8.1 km. Figs. 8 and
9 show the lading dispersion. It can be seen in the 99.8% of the runs,
three standard deviations from the mean, are under 10 km residual
error in Fig. 8. However, it can be seen in the only 18% of the runs,
three standard deviations from the mean, are under 10 km residual

Fig. 1. Martian atmospheric density.

Table 2
Simulation conditions and parameters.

Parameters θi (deg) ϕi (deg) hi (km) Vi (m/s)
Initial Values −90.072 −43.898 133.56 5505
Parameters γi (deg) ψi(deg)
Initial Values −14.15 4.99
Parameters θt(deg) ϕt (deg) ht (km) Vt(m/s)
Target Values −73.26 −41.43 8.10 450

Table 3
Dispersion parameters used in the Monte Carlo Simulations.

Parameters θi (deg) ϕi (deg) hi (km)
Initial Values −90.072 −43.898 133.56
3 var 0.15 0.03 2.306
Parameters Vi (m/s) γi (deg) ψi(deg)
Initial Values 5505 −14.15 4.99
3 var 2.85 0.15 0.23
Parameters ρ L D/
Values Sehnal Mars Atmosphere profile 0.24
3 var 13.3% 0.03

Fig. 2. Reference and actual tracking states: uD.

Fig. 3. Reference and actual tracking states: [29].
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Fig. 4. Trajectory tracking errors: uD.

Fig. 5. Trajectory tracking errors: [29].

Fig. 6. Latitude and Longitude errors: uD.

Fig. 7. Latitude and Longitude errors: [29].

Fig. 8. Lander dispersion with 5 km and 10 km landing dispersion ellipse for 1000
Monte Carlo runs: uD.

Fig. 9. Lander dispersion with 50 km and 100 km landing dispersion ellipse for 1000
Monte Carlo runs: [29].
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error in Fig. 9.
It is observed that the proposed control law (23) provides superior

control performance than this in [29] in both theory and simulations.
The proposed controller schemes uD based on an optimized dynamic
equation d∼ can provide faster, higher tracking control precision than
those in [29] (see Fig. 6–9).

Based on Figs. 4, 6, 8, the proposed control laws (23) are able to
achieve more accurate tracking in spite of Mars atmospheric density
uncertainty and lift-to-drag ratio disturbance existing in the Mars
Atmospheric Entry system. In addition, extensive simulations are also
done using different disturbances in Case 2 and Case 3. .

5.3. Comparisons results of various disturbances and values

In this section, simulation values of the Case 2 and Case 3 are
considered to the robustness of the proposed control law. Figs. 11–18
show the results of the trajectory tracking under the sliding mode
control (see [29]) based on the second-order differentiator with Mars
atmospheric density uncertainty and lift-to-drag ratio disturbance
existing in the spacecraft system in Case 2 and Case 3. Figs. 11 and
12 show the trajectory tracking errors between the current trajectory
and the reference trajectory. Figs. 13 and 14 show trajectory tracking
errors between the current trajectory and the reference trajectory.
Figs. 15–18 show the results of the 1000-run Monte Carlo analysis. The
stopping condition for all runs is implemented whenever the lander
reaches an altitude of 8.1 km. Figs. 17 and 18 show the lading

dispersion.
The simulation results of controller (23) in Case 2 and Case 3 are

depicted in Figs. 17 and 18, respectively. The control performances
under different disturbances are shown in Figs. 17, 18. Compared to in

Fig. 10. Altitude rate and its estimate: uD.

Fig. 11. Reference and actual tracking states: Case2.

Fig. 12. Reference and actual tracking states: Case3.

Fig. 13. Trajectory tracking errors: Case2.

Fig. 14. Trajectory tracking errors: Case3.
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Case 3, the proposed controller (23) can provide a more accurate
dispersion in Case 2.

From above comparison, it is obvious that the novel proposed
control law uD can achieve faster and more accurate tracking perfor-
mance in the presence of Mars atmospheric density uncertainty and

lift-to-drag ratio disturbance than this in (see [29]) (see Figs. 8, 17, 18
and 9).

Based on Fig. 4–18, the control laws (23) are able to achieve more
accurate tracking in spite of Mars atmospheric density uncertainty and
lift-to-drag ratio disturbance existing in the Mars Atmospheric Entry
system.

In order to demonstrate effectiveness of the proposed controller
(23), we do not change any parameter except the total uncertainties d∼

being replaced by z1. When the atmospheric density changes, the
proposed control law (23) can also provide better control ability than
[29]. Although the atmospheric density disturbances is large, the
Lander dispersion of controller (23) in Case 2 and Case 3 is also
reduced effectively (see Fig. 17, Figs. 18 and 9), which means controller
(23) can provide high control performance(e.g. faster, higher tracking
control precision) although the large atmospheric density disturbances,
and the designed method of proposed control laws (23) is more
effective.

6. Conclusion

In this paper, the trajectory tracking control problem of the Mars
atmospheric entry guidance with Mars atmospheric density uncertainty
and lift-to-drag ratio disturbance existing in the spacecraft system has
been studied using TSMC associated with the second-order differen-
tiator. The second-order differentiator is applied to estimate the total
disturbances of system, which has the high efficiency in accomplishing
the nonlinear dynamic estimation, by which terminal sliding mode
controllers are designed combing the two approaches respectively to
force the state variables of the closed-loop system to converge to the
reference trajectory. The proposed terminal sliding mode control law
by employing second-order differentiator provide finite-time conver-
gence, robustness, higher control precision. Meanwhile, the analysis of
the statistical results of the Monte Carlo runs shows that the proposed
algorithm performs well under perturbations and make is suitable for
real-time implementation.

Acknowledgements

The authors would like to thank the reviewers for their very helpful
comments and suggestions which have improved the presentation of
the paper. This work is supported by National Basic Research Program
of China (973 Program) (2012CB720000), the National Natural
Science Foundation of China (61225015, 61304226, 61105092,
61422102), the Beijing Natural Science Foundation (4161001),
Foundation for Innovative Research Groups of the National Natural
Science Foundation of China (61321002).
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Fig. 18. Lander dispersion with 10 km and 20 km landing dispersion ellipse for 1000
Monte Carlo runs: Case 3.
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