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a b s t r a c t

Let Gσ = (V , E, σ ) be a connected signed graph. Using the equivalence between signed
graphs and 2-lifts of graphs, we show that the frustration index of Gσ is bounded from be-
low and above by expressions involving another graph invariant, the smallest eigenvalue
of the (signed) Laplacian of Gσ . From the proof, stricter bounds are derived. Additionally,
we show that the frustration index is the solution to a l1-norm optimization problem over
the 2-lift of the signed graph. This leads to a practical implementation to compute the frus-
tration index. Also, leveraging the 2-lifts representation of signed graphs, a straightforward
proof of Harary’s theorem on balanced graphs is derived. Finally, real world examples are
considered.
© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A signed graph is defined as a graph Gσ = (V , E, σ ) for which a sign function σ : E → {−1,+1} is defined over the
edges. Such graphs appear naturally in fields such as sociology or systems biology. In sociology, it may describe relationships
between individuals, whereby the relations can be ‘‘friendly’’ and ‘‘unfriendly’’. In systems biology, those graphs, called
biological networks, describe activation or inhibition between molecules, typically enzymes, proteins or genes. Unless
specifically stated, all the graphs considered in the following are assumed to be connected and undirected.

Balance in a signed graph is characterized by the property that every path between two nodes have the same sign (the
sign of a path is the product of its edge signs). Equivalently, a graph is balanced if and only if every cycle is positive. In
sociology, it is thought [7], that relationship graphs tend to be balanced (individuals tend to form complementary alliances).

In systems biology, linearization of dynamical systems between molecules around a given state leads to signed graphs:
assume that a dynamical system is described by a set of n-differential equations.

∂x
∂t

= f (x(t)).

When linearized around a state x0, the signs of the Jacobian of the system define a signed graph. Monotone dynamical
systems are systems whose behaviors are simple (as opposed to oscillatory or chaotic solutions). It has been shown [6] that
a dynamical system is monotone if and only if the underlying undirected signed graph is balanced.

The minimum number of edges to delete in a sign graph Gσ = (V , E, σ ) to make the resulting graph balanced is
called the frustration index [10] and will be denoted by F (Gσ ). A signed graph has therefore a zero frustration index if
and only if it is balanced. This index indicates how far a graph is from being balanced and has attracted much attention
through sociology [11,7] and systems biology [16,15,23,22]. Algorithms and inequalities were established for estimating
the frustration index [16,15,14,27,8,29]. Moreover, the size of modern signed graphs (hundreds or thousands of nodes and
edges) makes the finding of a minimal set of edges whose deletion leads to a balanced graph challenging (this task is known
to be a NP-hard problem).
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Simple bounds have been established. For example, if the graph has n nodes and m edges, then m − n + 1 is an upper
bound for the frustration index (it follows from the deletion of all the edges, not belonging to a given spanning tree). Another
upper bound is given by (m −

√
m)/2 (see e.g., [16]).

The signed adjacency matrix of Gσ , A(Gσ ), is defined as an operator on l2(V ) by Axy = σ(x, y) if x and y are adjacent and
0 else. The signed Laplacian of Gσ is defined as L(Gσ ) = D(Gσ ) − A(Gσ ) where D(Gσ ) is the diagonal matrix whose entries
are the degrees of the vertices in (V , E) (here, the degree in a signed graph is defined as the degree in the classical sense
for the underlying unsigned graph). If the sign function is constant and positive, L(Gσ ) is the combinatorial Laplacian of
the undirected unsigned graph (V , E). Also, the resulting graph will be denoted by G+; similarly when the sign function
is constant and negative, the notation G− will be used. Finally, the spectrum of L(Gσ ), Sp(L(Gσ )), will be denoted by
0 ≤ µ1 ≤ · · · ≤ µn and the spectrum of an unsigned graph (V , E) by 0 = λ0 ≤ λ1 ≤ · · · ≤ λn−1, where n = |V |

(λ0 = 0 as the constant functions in l2(V ) are in the kernel of L(G)).
In spectral graph theory, the combinatorial Laplacian is leveraged to characterize graph properties through spectral

properties of this matrix [5]. As a simple example, the number of connected components of a graph (V , E) is equal to the
multiplicity of λ0. Another example is the relationship between the Cheeger constant of a graph and its first non-vanishing
eigenvalue λ1, called Cheeger inequalities [5]. Expander graph is another graph property linked to the spectrum of the
Laplacian.

By considering the signed Laplacian, attempts to establish spectral bound on the frustration index or related graph
invariants have been proposed [9,2,13,12,17,1]. However, no direct spectral upper bound has been derived for the frustration
index. Lift of graphs have been considered in connection with graph spectral gap [3] to construct expander graphs.

In [19], cause-and-effect biological network models are used to quantify biological network response to a treatment in a
cell system, by using gene expression experimental data. This approach requires the signed graph underlying the network to
be balanced. In a subsequent work [25], some unbalanced networks were manually curated by biological experts to lead to
balance by deleting some edges. However, complex networks such as the Oxidative Stress and Cell cycle network could not
be curated manually [24], which may prevent the use of the methodology in [19]. Therefore, finding the maximal balanced
subgraph by deleting edges is of particular interest.

The manuscript is organized as follows: In Section 2, we recall the definition and some basic facts about graph 2-lifts.
In Section 3, we use those notions to derive straightforward proofs of some known theorems on graph balance. We then
establish a spectral upper and lower bound for the frustration index. Leveraging the proof of themain theoremof the section,
we show that the frustration index can be formulated as an optimization problem over l1-functions. Finally, the frustration
for real-life networks is analyzed in Section 4.

2. 2-lifts of graphs

In this section we recall the definition and some basic facts about 2-lift (or lift for short) of graphs. As a convention, we
assume that there are no self-loops in the graphs considered and that graphs are connected.

Definition 2.1. Let G = (V , E) be a graph. A 2-lift of G is a graph Ĝ = (V̂ , Ê) whose vertices are given by V̂ = V+ ⨿ V−,
V+

∼= V−
∼= V and where each edge (x, y) of G is lifted to two edges of Ĝ: either {(x+, y+), (x−, y−)} or {(x−, y+), (x+, y−)}.

The natural surjective homomorphism between Ĝ → G is called the lift-map.

The adjacency matrix of Ĝ, Â, has a block structure
A1 A2
A2 A1


where A1 contains the edges within V+, and V− and A2 the edges between V+ and V−. It is straightforward to note that the
adjacency matrix of G, A(G) is given by A1 + A2. There is an obvious equivalence between the set of 2-lifts of a graph and
the set of all signings of that graph. If σ is the signing corresponding to the 2-lift, then the signed adjacency matrix of Gσ ,
A(Gσ ) = A1 − A2. The lift associated to a specific signing σ will be denoted by Ĝσ or simply Ĝwhen the context is clear.

Lemma 2.2 ([18]). The spectrum of the lift Ĝ is the union (with multiplicities) of the spectrum of Gσ and G. Moreover, the
eigenvectors of Ĝ are of the two following forms:


f
f


where f is an eigenvector of G or


f

−f


where f is an eigenvector of Gσ .

Proof. Let f be an eigenvector of Gwith eigenvalue λ. Then

f
f


is an eigenvector of Âwith eigenvalue λ. Alternatively if f is

an eigenvector of A(Gσ ) with eigenvalue µ, then


f
−f


is an eigenvector of Â of eigenvalue µ. As Â is twice the size of either

A(G) or A(Gσ ), summing the multiplicities of A(G) and A(Gσ ) shows that every eigenvector of Â is of this form. �

The lemma above extends directly to the Laplacian matrices associated to G, Gσ and Ĝ using the fact that

D(G) = D(Gσ ), D(Ĝ) =


D(G) 0

0 D(G)


and L(Ĝ) =


D(G)− A1 A2

A2 D(G)− A1


.
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A function in l2(V̂ ) of the form


f
−f


with f ∈ l2(V ), will be called anti-symmetric. Finally, we immediately derive from

those considerations the following lemma:

Lemma 2.3.

µ1(Gσ ) = inf
g∈l2(V )
g≠0

⟨L(Gσ )g|g⟩
∥g∥2

= inf
f∈l2(V̂ )
f ≠0

f anti-symmetric

⟨L(Ĝσ )f |f ⟩
⟨f |f ⟩

.

Observe that on one hand, λ0(Ĝσ ) corresponds to λ0(G+) and on the other hand, λ1(Ĝσ ), the second eigenvalue
(accounting for multiplicities) of the Laplacian of Ĝσ , is either equal to λ1(G) or to µ1(Gσ ).

3. Main results

This section is devoted to the use of 2-lift of graph to study properties of a signed graph Gσ and the frustration index of
such a graph.

3.1. Results based on 2-lifts

We leverage the bijection between the set of 2-lifts of a graph and all possible signings of that graph to prove some
known facts on signed graphs. The next lemma relates the balanced-property of a signed graph to a topological property of
the associated 2-lift:

Lemma 3.1. Let Gσ = (V , E, σ ) be a connected signed graph and let Ĝσ be the associated lift. Then Gσ is balanced if and only if
Ĝσ has two connected components.

Proof. If Ĝσ is connected, then, for any x ∈ V there exists a path from x+ to x−. This path involves necessarily an odd
number of crossing edges from V+ to V− which corresponds to a negative cycle in Gσ . Conversely, if Ĝσ has two connected
components, each component should project onV by the liftmap,which implies that a connected component cannot contain
x+ and x− simultaneously. This shows that every cycle in Gσ must be positive. �

This directly implies combining the last two lemmas that Gσ is balanced if and only if 0 ∈ Sp(L(Gσ )), which provides
thereof a short proof of this well known fact, whose proof usually involves the matrix-tree theorem for signed graphs [28].

The next result, the proof of Harary’s theorem on balanced graphs [10] becomes straightforward when using the 2-lift
formalism.

Theorem 3.2 (Harary [10]). Let Gσ = (V , E, σ ) be a connected signed graph. Gσ is balanced if and only if V̂ can be partitioned
in two subsets, V1, V2 such that all the edges within Vi’s are positive and all others between V1 and V2 are negative.

Proof. Let π : Ĝσ → G be the covering map. From the previous lemma, Gσ is balanced if and only if Ĝ has two connected
components whose vertex sets are denoted by C1, C2. Let V̂1 = C1 ∩ V+ ⨿ C2 ∩ V− and V̂2 = C1 ∩ V− ⨿ C2 ∩ V+. Then V̂1 and
V̂2 are disjoint. Then Vi = π(V̂i) defines a partition of V . By definition of V1, V2, all the edges between V1 and V2 are negative
(i.e., cross the two layers) and all the ones within Vi’s are positive (i.e., are within the same layer). �

Two signings, σ1, σ2 of the graph G = (V , E), are said to be switching equivalent if there exists a map θ : V → {1,−1}
such that σ2(u, v) = θ(u)σ1(u, v)θ(v), ∀u ∼ v ∈ E. This notion translates to an operation of the lifted graphs which is given
in the following lemma.

Lemma 3.3. Two signings σ1, σ2, are equivalent if and only if there exist a sequence of permutation matrices Pi, i = 1, . . . , k,
each permuting vertices from V+ and V−, such that PTA( ˆGσ2)P = A( ˆGσ2) where P = P1 · · · Pk.

The proof is immediate and will be omitted. For a subset of vertices S in a graph we denote by ∂S the boundary of S, which
is defined as the set of vertices not in S adjacent to at least one vertex in S. The usage of 2-lifts for solving the frustration
index problem is justified in the following lemma that is an immediate consequence of the definitions.

Lemma 3.4. Let Gσ = (V , E, σ ) be a connected signed graph and let Ĝσ be the associated 2-lift. A partition of V̂ is said to be
admissible in the lift if |V̂1| = |V̂2| = n and V = π(V̂i) for each partition set. We have

2
n

F (Gσ ) = inf
|∂ V̂1|

|V̂1|
,

where infimum is taken over all admissible partitions V̂1⨿ V̂2. By symmetry of the lift V̂2 can be equally used in the above equation.
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3.2. The frustration index and µ1(Gσ )

The following theorem establishes a link between the frustration index and the first eigenvalue of the signed Laplacian
matrix, µ1(Gσ ).

Theorem 3.5. Let F (Gσ ) be the frustration index of Gσ and µ1(Gσ ) be the first eigenvalue of L(Gσ ). Then the following
inequalities hold:

n
4

· µ1(Gσ ) ≤ F (Gσ ) ≤
n

√
2

·


µ1(Gσ )(2∆− µ1(Gσ ))

where∆ is the maximum degree in Gσ .

Proof. Let C be a minimal cut that makes the signed graph balanced and let Ĉ be its lift and V1 ⨿ V2 the associated partition
of V̂ . Let f be the unit norm function (as |V1| = |V2| = n) defined by:

f (x) =


1

√
2n

if x ∈ V1

−
1

√
2n

if x ∈ V2.

Using Lemma 2.3:

µ1(Gσ ) = inf
f ≠0

f anti-symmetric

⟨L(Ĝ)f |f ⟩
⟨f |f ⟩

= inf
f ≠0

f anti-symmetric


x∼y∈Ê

(f (x)− f (y))2

∥f ∥2
,

we have

µ1(Gσ ) ≤


x∈V1,y∈V2

(f (x)− f (y))2 =
2
n

· |Ĉ | =
4
n

· |C |.

For the second inequality, we follow the strategy of the proof in [20] and make use of the symmetry of the lift. Let us
denote µ1(Gσ ) by µ1, L(Ĝσ ) by L̂ and D(Ĝσ ) by D̂.

Let g be an eigenfunction for µ1 on Ĝ (which is anti-symmetric). Let V+
= {x ∈ V̂ |g(x) ≥ 0}, V−

= {x ∈ V̂ |g(x) < 0}
and let g+, g− be defined by

g+(x) =


g(x) if x ∈ V+

0 else and g−(x) =


g(x) if x ∈ V−

0 else.

Using the Rayleigh quotient, we have:

µ1∥g+
+ g−

∥
2

= ⟨g+
+ g−

|L̂(g+
+ g−)⟩

= ⟨g+
|L̂g+

⟩ + ⟨g−
|L̂g−

⟩ + 2⟨g+
|L̂g−

⟩. (1)

If L̂− denotes the signed Laplacian of Ĝ− where − denotes the negative constant sign function on G, then L̂−
+ L̂ = 2D̂

which implies that for any h ∈ l2(V̂ ), ⟨h|L̂−h⟩ − ⟨(2D̂ − µ1)h|h⟩ = µ1⟨h|h⟩ − ⟨h|L̂h⟩. Therefore, using this equality, the
orthogonality between g+ and g− and, as D̂ is diagonal, that ⟨D̂g−

|g+
⟩ = 0 by definition of g+ and g−, we get:

⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂−g−

⟩ − (2∆− µ1)∥g+
+ g−

∥
2

≤ ⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂−g−

⟩ − ⟨(2D̂ − µ1)(g+
+ g−)|g+

+ g−
⟩

= ⟨g+
|L̂−g+

⟩ − ⟨(2D̂ − µ1)g+
|g+

⟩ + ⟨g−
|L̂−g−

⟩ − ⟨(2D̂ − µ1)g−
|g−

⟩ − 2⟨(2D̂ − µ1)g−
|g+

⟩

= µ1∥g+
+ g−

∥
2
− ⟨g+

|L̂g+
⟩ − ⟨g−

|L̂g−
⟩

= 2⟨g+
|L̂g−

⟩.

which implies that

(2∆− µ1)∥g+
+ g−

∥
2

≥ ⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂−g−

⟩ − 2⟨g+
|L̂g−

⟩. (2)
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Multiplying Eqs. (1) and (2), setting γ = 2⟨g+
|L̂g−

⟩, we get as L̂ and L̂− are positive definite:

µ1(2∆− µ1)∥g+
+ g−

∥
4

≥ ⟨g+
|L̂g+

⟩⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂g−

⟩⟨g−
|L̂−g−

⟩

+ ⟨g+
|L̂g+

⟩⟨g−
|L̂−g−

⟩ + ⟨g−
|L̂g−

⟩⟨g+
|L̂−g+

⟩

+ γ (−⟨g+
|L̂g+

⟩ + ⟨g+
|L̂−g+

⟩ − ⟨g−
|L̂g−

⟩ + ⟨g−
|L̂−g−

⟩ − γ )

≥ ⟨g+
|L̂g+

⟩⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂g−

⟩⟨g−
|L̂−g−

⟩

+ γ (⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂−g−

⟩ − ⟨g−
|L̂g−

⟩ − ⟨g+
|L̂g+

⟩ − γ ).

As L̂−
= 2D̂ − L̂,

⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂−g−

⟩ − ⟨g−
|L̂g−

⟩ − ⟨g+
|L̂g+

⟩ − γ = ⟨2D̂g+
|g+

⟩ + ⟨2D̂g−
|g−

⟩ − γ − 2⟨L̂g+
|g+

⟩ − 2⟨L̂g−
|g−

⟩

= ⟨2D̂g+
|g+

⟩ + ⟨2D̂g−
|g−

⟩ − µ1⟨g+
|g+

⟩ − µ1⟨g−
|g−

⟩ + γ

= ⟨(2D̂ − µ1)g+
|g+

⟩ + ⟨(2D̂ − µ1)g−
|g−

⟩ + γ .

As γ is positive, the latest expression is positive if and only ifµ1 ≤ minx∈V̂ deg(x). Let {x+, x−} be the fiber of a vertex x ∈ V
in V̂ and let us a define an anti-symmetric function h ∈ l2(V̂ ) as

hx(z) =


1

√
2

if z = x+

−
1

√
2

if z = x−

0 else

Using the Lemma 2.3, and the equality ⟨L(Ĝ)h|h⟩ = deg(x+)+ deg(x−), we conclude that 2D̂ − µ1 is positive definite.
Therefore as by definition γ is also ≥ 0:

µ1(2∆− µ1)∥g+
+ g−

∥
4

≥ ⟨g+
|L̂g+

⟩⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂g−

⟩⟨g−
|L̂−g−

⟩

Let α+ =


x∼y |g+(x)2 − g+(y)2| and α− =


x∼y |g−(x)2 − g−(y)2|. By Cauchy–Schwarz inequality, we obtain:

α2
+

+ α2
−

≤ ⟨g+
|L̂g+

⟩ · ⟨g+
|L̂−g+

⟩ + ⟨g−
|L̂g−

⟩ · ⟨g−
|L̂−g−

⟩

≤ µ1(2∆− µ1)∥g+
+ g−

∥
4. (3)

It follows from the anti-symmetry of g , that the set of distinct values taken by g+ is the same as the set of values taken by
g− up to the sign. Let −ξm < · · · < −ξ1 < 0 = ξ0 < ξ1 < · · · < ξm be the values taken by g . In particular, by symmetry of
the lift, α+ = α−. Let V+

i = {x ∈ V̂ |g(x) ≥ ξi} and V−

i = {x ∈ V̂ |0 > g(x) > −ξi}.
Therefore,

∂V+

i = {y ∈ V̂ |∃x ∼ y s.t. g(x) ≥ ξi > g(y)}

and

∂V−

i = {y ∈ V̂ |∃x ∼ y s.t. 0 > g(x) > −ξi and g(y) ≤ −ξi or g(y) ≥ 0}.

On one hand, we have:

α+ =

m
i=1


x∼y

g+(y)=ξj<g+(x)=ξi

(g+(x)2 − g+(y)2)+

m
i=1


x∼y

g+(y)=0<g+(x)=ξi

(g+(x)2 − g+(y)2)

=

m
i=1


x∼y

g+(y)=ξj<g+(x)=ξi

(ξ 2i − ξ 2j )+

m
i=1


x∼y

g+(y)=0<g+(x)=ξi

ξ 2i

≥

m
i=1


x∼y

g+(y)=ξj<g+(x)=ξi

(ξ 2i − ξ 2i−1)+

m
i=1


x∼y

g+(y)=0<g+(x)=ξi

(ξ 2i − ξ 2i−1)

=

m
i=1

|∂V+

i |(ξ 2i − ξ 2i−1)
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and on the other hand:

α− =

m
i=1


x∼y

g−(x)=−ξi<g−(y)=−ξj

(g−(y)2 − g−(x)2)+

m
i=1


x∼y

g−(x)=−ξi<0≤g(y)=ξj

g−(x)2

=

m
i=1


x∼y

g−(x)=−ξi<g−(y)=−ξj

(ξ 2i − ξ 2j )+

m
i=1


x∼y

g−(x)=−ξi<0≤g(y)=ξj

ξ 2i

≥

m
i=1


x∼y

g−(x)=−ξi<g−(y)=−ξj

(ξ 2i − ξ 2i−1)+

m
i=1


x∼y

g−(x)=−ξi<0≤g(y)=ξj

(ξ 2i − ξ 2i−1)

=

m
i=1

|∂V−

i |(ξ 2i − ξ 2i−1).

Therefore,

α+ + α− ≥

m
i=1

(|∂V+

i | + |∂V−

i |)(ξ 2i − ξ 2i−1)

≥
2F (Gσ )

n

m
i=1

|V+

i ∪ V−

i |(ξ 2i − ξ 2i−1)

=
2F (Gσ )

n

m
i=0

ξ 2i

|V+

i ∪ V−

i | − |V+

i+1 ∪ V−

i+1|


=
2F (Gσ )

n


x∈V̂

(g+(x)2 + g−(x)2) (4)

where ξ0 = 0, |V+

m+1| = 0 and Vm+1 = {x ∈ V̂ |g(x) = −ξm}. It is important to note that the partition of Ĝ induced by
V+

i ∪ V−

i (and its complement) is admissible in the sense of Lemma 3.4. Using (3) and (4) and the fact that α+ = α−, we
finally obtain:

F (Gσ ) ≤
n

√
2


µ1(2∆− µ1)

Note that the theorem is trivial for G+. The result of Theorem 3.5 has to be comparedwith thework in [12] where another
graph invariant,ψ(Gσ )

.
= min∅≠S⊆V

F (S)+|∂S|
|S| , has been bounded below by µ1(Gσ )

4 and above by
√
µ1(Gσ )(2∆− µ1(Gσ )). It

is clear from the definitions that ψ(Gσ ) ≤ F (Gσ )/n. Therefore, using the upper bound of Theorem 3.5 leads to a bound of
ψ(Gσ ) improved by a factor 1/

√
2.

Corollary 3.6. Let f be an anti-symmetric eigenfunction in l2(V̂ ) corresponding to µ1. If V+ = {x ∈ V̂ |f (x) > 0}, then the
following inequalities hold

n
2


x∼y∈∂V+

(f (x)− f (y))2 ≤ F (Gσ ) ≤ |∂V+|

where f is the eigenfunction associated with the first (non-zero) eigenvalue of Ĝ.

Proof. By symmetry


x∼y∈∂V+
(f (x)− f (y))2 =


x∼y∈∂V−

(f (x)− f (y))2 and each of those terms is bounded by λ1(Gσ ) by
definition of f . �

Following Corollary 3.6, we see that considering the admissible partition induced by Fl2(Gσ )
.
= |∂V+| is a (computation-

ally) fast approximation to the frustration index and provide a sub-optimal set of edges for solving the frustration problem.

3.3. A l1-norm minimization formulation for the frustration index

In this section, we obtain an equality relating the frustration index to a convex optimization problem. Recall that a
function f ∈ l2(V̂ ) is said to be anti-symmetric if there exists an admissible partition V1 ⨿ V2 such that the restrictions
to the subset Vi (denoted by f |Vi ) satisfy f |V1 = −f |V2 .
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Theorem 3.7. Let F (Gσ ) be the frustration index of Gσ . The following equality holds:

F (Gσ ) =
n
2

min
f ≠0∈l2(V̂ ), f anti-symmetric


x∼y

|f (x)− f (y)|
x

|f (x)|
.

Proof. Let f ∈ l2(V̂ ) that is anti-symmetric (f (x+) = −f (x−), where x+, x− is the fiber of x ∈ V ). Let c ∈ R+. Following the
same strategy of the proof of Theorem 3.5, let−ξm < · · · < −ξ1 < 0 = ξ0 < ξ1 < · · · < ξm be the values taken by f . Let f +

and f − defined as in Theorem 3.5 and Vi = {x|f (x) ≥ ξi or 0 > f (x) > −ξi}. Then following the arguments of the previous
proof: 

x∼y

|f (x)− f (y)| ≥
2F (Gσ )

n

m
i=1

|Vi|(ξi − ξi−1)

=
2F (Gσ )

n

m
i=0

ξi (|Vi| − |Vi+1|)

=
2F (Gσ )

n


x∈V̂

(f +(x)− f −(x)) =


x∈V̂

|f (x)|. (5)

This shows F (Gσ ) ≤
n
2 minf ≠0


x∼y |f (x)−f (y)|

x |f (x)| .

The equality follows from considering a minimum admissible partition V1 ⨿ V2 of the lift. By defining the unit l1-norm
function (as |V1| = |V2| = n):

f (x) =


1
2

if x ∈ V1

−
1
2

if x ∈ V2.

Then


x∼y |f (x)−f (y)|
x |f (x)| =

2
n · F (Gσ ). �

Therefore, in order to compute the frustration index of a signed graph, we need to solve the minimization problem of
Theorem 3.7. To that end, we follow the approach described in [26], where the anti-symmetry constraint is accounted by
solving the problem on one set of any admissible partition.

Theorem 3.8 ([26]). The global solution to the optimization problem minx∈D
f (x)
g(x) , where g(x) > 0,∀x ∈ D, is equivalent to the

root of h(λ) = minx∈D(f (x)− λ · g(x)), provided that f (x)− λg(x) is bounded below.

Therefore the following alternating algorithm can be derived: Let x0 ∈ D. Alternate the two following steps until
convergence:

1. Compute λk
f (xk)
g(xk)

2. Solve xk+1 = argminx∈D(f (x)− λkg(x)).

It is shown in [26] that the algorithm decreases the objective function at each step and therefore converge to a (local)
minima. As a starting vector, the first eigenvector of L(Gσ ) is used in practice.

We also notice that once a solution f of the above optimization problem is found, we can, in addition to the frustration
index, find a set of edges solving for it by considering again the set of edges induced by |∂V+(f )|, where V+(f ) = {x ∈

V̂ |f (x) > 0}.

4. Real-life examples

The first example is a well-known social network describing relationships between cultures of the Central Highlands, in
New Guinea [21]. The frustration index and the various bounds are shown in Table 1; while a solution to the frustration is
given in Fig. 1. Interestingly, Fl2(Gσ ) is strictly greater than F (Gσ ); showing that the frustration cannot be systematically
computed using the first eigenvector of the signed Laplacian.

Our motivation for studying the frustration index is mainly linked to the suite of causal biological networks from [4].
Those 61 networks describe key processes such as cell fate, inflammation or cell stress. Similar networks have been used
in [19,25], where a network scoring that requires network to be balanced is discussed. The frustrations and the vari-
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Fig. 1. One solution to the frustration problem for the cultures of the Central Highlands social network. Edges which removal leads to a balanced network
are shown in red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Frustration index, and its various bounds for the Central Highlands network.
f ∈ l2(V̂ ) denotes the first eigenvector of the Laplacian for Gσ .

Index Value

F (Gσ ) 7.00
n
4 · λ1(Gσ ) 4.16
Fl2 (Gσ ) 8.00
n

√
2

·
√
λ1(Gσ )(2∆− λ1(Gσ )) 50.25

m−
√
m

√
2

35.63

min(|E+|, |E−|) 29.00
|E| 58.00
|V | 16

ous bounds for this suite of networks are shown in Table 2. About one third of the networks are found to be balanced
(19 out of 61).

The cell cycle and oxidative stress networks have the highest frustration. In [24], manual attempts to extract a maximal
balanced sub-networks for those two networks in particular failed (while using closely related networks). Also none of the
frustration was solved by removing min(|E+|, |E−|) edges.

In those examples, the upper spectral bounds are not tight when the graphs are unbalanced.
The closer upper bound is clearly obtained by using Fl2(Gσ ). We also observe that F (Gσ ) is found by computing Fl2(Gσ )

for 28 out of the 42 unbalanced networks. As a consequence, as Fl2(Gσ ) is faster to compute, this bound is foreseen to be a
useful approximation for very large graphs (hundreds of thousands of nodes).

5. Conclusion

Solving the frustration problem is combinatorial by nature and requires thereof efficient approaches. In this article, we
established inequalities linking the frustration index and the first eigenvalue of the signed combinatorial Laplacian. From
the main proof, we formulated the problem of finding a solution to the frustration as a l1-norm optimization problem that
can be efficiently implemented. This approach was illustrated on 61 biological networks.

From the proposed approach, a solution to remove the frustration in a graph is found. An interesting open problem is to
enumerate several (at least many) solutions to the frustration in a given graph and, to our knowledge, remains unsolved.
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Table 2
Bounds and frustration index for the CausalBioNet network suite. Only the results for the 42 unbalanced networks are shown.

F (Gσ ) n
4 ·

λ1(Gσ )
Fl2 (Gσ )

n
√
2

·
√
λ1(Gσ )(2∆− λ1(Gσ ))

m−
√
m

√
2

min(|E+|, |E−|) |E| |V |

Cell Interaction 1 0.24 2 23.05 64.31 6 101 79
CV-IPN-Smooth muscle cell activation 1 0.41 1 49.97 117.11 13 179 137
Drug Metabolism Response 1 0.42 2 45.92 58.27 6 92 66
Mapk 1 0.07 2 8.46 32.99 12 54 44
Megakaryocyte Differentiation 1 0.39 1 47.68 102.83 14 158 122
Necroptosis 1 0.25 1 34.28 56.26 9 89 68
NK Signaling 1 0.16 1 17.41 49.58 2 79 66
Nuclear Receptors 1 0.14 1 13.06 25.77 8 43 37
Osmotic Stress 1 0.13 1 20.98 55.59 6 88 75
Cell Migration and Adhesion in Wound
Healing

2 0.40 2 102.09 210.19 19 315 198

CV-IPN-Endothelial cell–monocyte
interaction

2 0.48 2 54.94 71.04 5 111 87

Epithelial Innate Immune Activation 2 0.52 2 61.94 115.07 13 176 132
Epithelial Mucus Hypersecretion 2 0.59 2 94.18 136.20 23 207 134
Mast cell activation 2 0.57 2 38.80 40.92 4 66 55
Mechanisms of Cellular Senescence 2 0.44 2 75.10 120.52 19 184 139
Autophagy 3 0.79 3 109.07 130.74 31 199 135
ECM Degradation 3 0.97 3 60.21 80.48 24 125 67
Fibrosis 3 1.41 3 218.77 235.64 44 352 181
Wound Healing 3 1.17 3 170.96 212.25 19 318 196
Angiogenesis 4 1.46 4 174.56 216.37 44 324 238
Hypoxic Stress 4 1.43 4 133.83 124.60 36 190 125
mTor 4 1.28 4 39.59 36.29 7 59 44
Wnt 4 0.76 7 41.59 56.93 20 90 57
CV-IPN-Endothelial cell activation 5 1.73 5 205.78 272.15 36 405 245
Th1_Th2 Signaling 5 1.07 5 100.48 106.91 16 164 118
Xenobiotic Metabolism Response 5 1.65 5 99.04 79.81 9 124 71
CV-IPN-Plaque destabilization 6 2.48 6 241.60 331.52 72 491 245
Apoptosis 7 1.94 8 296.70 283.18 78 421 270
CV-IPN-Platelet activation 7 1.92 7 132.19 117.11 11 179 134
Endoplasmic Reticulum Stress 7 1.64 9 104.93 91.98 30 142 99
Endothelial Innate Immune Activation 7 1.86 8 127.64 127.33 23 194 137
Growth Factor 7 1.53 9 209.93 298.37 26 443 277
Microvascular endothelium activation 7 1.76 7 82.94 106.23 23 163 109
Clock 8 1.93 23 103.19 94.02 33 145 77
Macrophage Signaling 8 2.72 9 259.48 192.33 37 289 221
NFE2L2 Signaling 8 1.60 13 119.36 93.34 23 144 97
CV-IPN-Foam cell formation 9 1.58 9 134.74 188.90 33 284 192
Endothelial Shear Stress 9 2.21 9 147.97 90.63 23 140 92
Neutrophil Signaling 9 2.85 11 310.62 249.41 30 372 229
Response to DNA Damage 10 2.52 11 304.49 242.52 50 362 249
Cell Cycle 20 5.16 20 281.16 201.26 71 302 183
Oxidative Stress 21 5.20 28 579.77 341.89 66 506 337
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