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ABSTRACT

Phenotyping has become the rate-limiting step in using large-scale genomic data to understand and

improve agricultural crops. Here, the Bellwether Phenotyping Platform for controlled-environment plant

growth and automated multimodal phenotyping is described. The system has capacity for 1140 plants,

which pass daily through stations to record fluorescence, near-infrared, and visible images. Plant Com-

puter Vision (PlantCV) was developed as open-source, hardware platform-independent software for

quantitative image analysis. In a 4-week experiment, wild Setaria viridis and domesticated Setaria italica

had fundamentally different temporal responses to water availability. While both lines produced similar

levels of biomass under limited water conditions, Setaria viridismaintained the same water-use efficiency

under water replete conditions, while Setaria italica shifted to less efficient growth. Overall, the Bellwether

Phenotyping Platform and PlantCV software detected significant effects of genotype and environment on

height, biomass, water-use efficiency, color, plant architecture, and tissue water status traits. All �79 000

images acquired during the course of the experiment are publicly available.
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INTRODUCTION

With growing and more affluent worldwide populations, agri-

cultural crop yields will need to increase significantly by 2050

(Ray et al., 2013; Gerland et al., 2014). Sustainably increasing

crop yields in the face of changing environments (IPCC, 2014),

and doing so with a smaller environmental footprint, is one of

the most pressing global challenges of the 21st century. With

changing climate, more prevalent episodes of regional drought

and damage due to precipitation extremes will limit agricultural

productivity (IPCC, 2014). Salination of agricultural lands and

low soil fertility are also increasingly important limitations to

crop productivity in many regions.
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Advances in DNA sequencing technology have facilitated rapid

progress in plant genomics, which has accelerated traditional

breeding, molecular marker-assisted breeding, genome editing,

and other approaches for crop improvement. Application of

genomic technologies, however, is limited by the ability to reliably

quantify plant traits (phenotypes). Traits can range in scale from

gene expression to yield in the field. Variation in most traits is

quantitative, with contributions from multiple genetic loci. Use

of genetically defined populations, such as recombinant inbred
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lines (RILs), near-isogenic lines, or accession/association panels,

can be used to identify the underlying genetic bases for pheno-

types, but only when subtle changes in phenotype are accurately

and consistently quantified (Benfey and Mitchell-Olds, 2008).

Consequently, plant phenotyping is widely regarded as the

rate-limiting step in crop improvement using genome-enabled

approaches (Furbank and Tester, 2011; McCouch et al., 2013).

Abiotic stresses can have variable or gradual effects that

depend on plant developmental stage. Therefore, measuring

phenotypes over time is necessary for in-depth understanding of

plant stress responses (Richards and Thurling, 1978; Schoffl,

1998; Mahfoozi, 2001). Destructive methods of assessing

plant phenotypes have been used in the majority of studies

(Furbank and Tester, 2011), but such methods do not allow traits

of discrete individuals to be compared over time. Accordingly,

destructive sampling requires an exponential increase in

sampling population size with each time point added. Non-

invasive and non-destructive techniques permit temporal exami-

nation of traits in individual plants, reducing the number of plants

needed and permitting larger populations to be examined. The

emerging field of plant phenomics, the high-throughput, non-

destructive examination of plant growth and development in field

or controlled-environment settings, provides new technologies

that increase the accuracy and speed of data collection and

analysis (Furbank and Tester, 2011). Current non-destructive phe-

nomics technologies focus on a number of traits that, directly or

indirectly, reflect chlorophyll content, carotenoid content, photo-

synthesis, transpiration, plant water content, biomass, and height

(White et al., 2012; Andrade-Sanchez et al., 2014).

Phenotyping in the field has all the advantages and disadvan-

tages associated with field-based research. For example, field

phenomics allows crop-sized plants to be examined in a natural

environmental setting, but field-grown plants are subject to

discrete seasonal growing periods and uncontrollable envi-

ronmental conditions that increase experimental variability.

Although a less natural setting, controlled-environment phe-

nomics platforms (Hartmann et al., 2011; Klukas et al., 2014)

allow (1) precise control of environmental variables and

treatments, (2) experimental replication under reproducible

conditions, and (3) better control of instrument placement

and functionality. Controlled-environment phenotyping also

enables faster experimental turnover, which expedites the

cyclical development of image processing algorithms and

proxy measurement models that are applicable to both field

and controlled-environment phenomics.

The Bellwether Phenotyping Platform combines automated,

controlled-environment plant growth with high-throughput, non-

destructive imaging and is representative of the next wave of

phenotyping platforms aimed at relieving bottlenecks of phenom-

ics data collection. Following data collection, image processing

and trait analysis are the next barrier to understanding the under-

lying biology in high-throughput phenotyping data. Standardized

methods for processing image-based, high-throughput plant

phenomics data lag behind high-throughput sequencing analysis

tools in part because of the variety of commercial and non-

commercial platforms used, the numerous research focus areas,

and the variety of species and treatments. There is a growing

plant phenomics community (http://www.plant-phenotyping.
Mo
org/) and an excellent database of both commercial and

open-source plant image processing software (http://www.

plant-image-analysis.org/; Lobet et al., 2013). However, we

chose to develop a new trait extraction software platform for

daily high-throughput image analysis, Plant Computer Vision

(PlantCV). PlantCV is written in a scripting language that has

been shown to be accessible to biologists (Mangalam, 2002;

Dudley and Butte, 2009), is compatible with a variety of image

types and sources, and has a community contribution schema

that has been successful for other bioinformatics resources

(Oliphant, 2007; Hunter, 2007).

The utility of the system and software is demonstrated here

using Setaria species and RILs grown under different water

conditions. The C4 model monocot Setaria viridis (green millet)

and the drought-tolerant domesticated crop Setaria italica

(foxtail millet) (Zhang et al., 2007; Lata et al., 2010, 2011) are

closely related to each other and to important crops with

similar architecture, such as maize, sorghum, miscanthus, and

switchgrass (Brutnell et al., 2010; Li and Brutnell, 2011; Sage

and Zhu, 2011). Given the relatively limited understanding

of monocot stress responses compared with Arabidopsis (Bray,

1997; Wilkins et al., 2010), and the importance of cereal crops

as sources of food (Ray et al., 2013), Setaria has emerged as

a useful model system to explore fundamental aspects of

monocot biology (Nelson and Dengler, 1997; Kellogg, 1999;

Doust, 2007a; Jia et al., 2013; Qie et al., 2014). Concerted

data collection with the Bellwether Phenotyping Platform

and analysis with PlantCV detected fundamentally different

temporal responses to water availability between the wild and

domesticated Setaria species. The wild Setaria line maintains

water-use efficient growth while the domesticated line shifts to

less water-use efficient growth in water sufficiency. This publicly

availableSetaria dataset of�79 000 images, which is available on

the iPlant Data Store (Goff et al., 2011) and through the Bio-Image

Semantic Query User Environment (BisQue) platform (Kvilekval

et al., 2010; also see http://plantcv.danforthcenter.org/pages/

data.html), represents the next generation of big data to query

for phenotypes that affect important yield traits.
RESULTS AND DISCUSSION

Design of the Bellwether Phenotyping Platform

The design of the platform was key to the execution of the

Setaria water-limitation experiment described below. The

system comprises a Conviron (Winnipeg, Canada) climate-

controlled growth house integrated with a multi-camera digital

imaging system (LemnaTec Scanalyzer3D-HT, Figure 1A). This

automated high-throughput platform allows for repeated non-

destructive image capture for multi-parametric analysis and

provides valuable information on the physiological changes of

the plants over time. The integration of Conviron and Lemna-

Tec technologies and other custom design decisions was moti-

vated by the goal of tightly controlling the environment while

analyzing large numbers of plants. In comparison with green-

house environments where external factors such as cloud

cover or extreme seasonal temperatures can greatly affect

the environmental conditions and introduce unpredictable vari-

ables into an experiment, the control of this system facilitates

reproducible temporal phenotyping of plants.
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Figure 1. Bellwether Phenotyping Platform at the Donald Danforth Plant Science Center.
(A) Diagram of the platform.

(B) The volume of water added to S. viridis plants during morning (ZT23) and evening (ZT8) water applications. The arrowheads indicate the day that the

33% FC water treatment started.
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A compact network of over 180 m of conveyor belts is used to

store and transport 1140 plants in pots 10 cm (4 inches) in

diameter to and from watering and imaging stations inside the

chamber. The conveyor belts are divided into four distinct mod-

ules (MOD1–4), which can be controlled independently or as

a whole, providing flexibility in experimental design (Figure 1A).

A custom-engineered automated door maintains the growth

house environment while providing a route for plants to leave

and enter the chamber (Figure 1A). The pots are moved in

radiofrequency identification (RFID) chipped carriers, which are

associated with plant barcodes that are used to organize

collected image data and metadata, including water treatment

instructions. Each MOD contains a precision dual-tank watering

station that is equipped with a scale, which can be configured

to water to a fixed volume or to a target weight, which makes a

variety of experimental watering schemes possible including

periodic water stress. When watered to an experimentally deter-

mined target weight, the real-time weight of each pot is used

to calculate the amount of water required to reach the pre-

determined target.

The decision to install four watering stations inside the growth

house (Figure 1A) allows for tight control of soil water status

while maintaining imaging throughput. Due to the single-file

movement of the carriers through the closed-loop conveyor sys-

tem, a single watering station would have limited the number of

water applications possible in a day and would have competed

with imaging time. A single watering station would have also

introduced a significant temporal divide between the first and

last watered plants, adding variability into the treatment groups

and confounding water usage analysis. Instead, four plants can

be watered simultaneously, improving efficiency and drastically

reducing the time required to water the entire population (less

than 2 h).

The digital imaging loop connected to the growth house con-

sists of a dark adaptation tunnel and three distinct imaging

chambers: visible light (VIS), photosystem II (PSII) fluorescence,
1522 Molecular Plant 8, 1520–1535, October 2015 ª The Author 2015.
and near-infrared (NIR) (Figure 1A). The imaging stations are

described in detail in the sections below. Visible light imaging is

used to capture and quantify morphological parameters such

as plant shape, color, size, and biomass. PSII fluorescence is

used for the analysis of photosynthetic efficiency, which can be

used to estimate the response to plant treatment or stress, or

to measure photosynthetic differences among genetically

diverse lines (Maxwell and Johnson, 2000; Garg et al., 2002;

Fernández-Garcı́a et al., 2014; Talukder et al., 2014). NIR

imaging is used to estimate the tissue water content (Carter,

1991; Peñuelas and Filella, 1998; Seelig et al., 2008, 2009). The

throughput of the system depends on experimental design, the

desired number of output images, the frequency of water

treatment, and is limited by the transport rate of the conveyor.

At full capacity (1140 plants), using all imaging chambers to

capture top-view and four side-view images (PSII top-view

only), the entire population can be imaged in approximately

30 h, typically yielding between 25 000 and 37 500 images per

week.
Setaria Water-Limitation Experiment

With target-weight water treatments possible on the Bellwether

Platform, the water available to the plant should be tightly

controlled. To increase the precision of target-weight watering,

pre-filled pots of soil were used. The use of pre-filled pots also

helped to ensure that soil density was similar between pots. To

test the platform and examine the response of Setaria to water-

limited conditions, 10 Setaria lines were grown under four

different water regimes (full-water capacity: 100% FC, 66% FC,

33% FC, and 0% FC) imposed 17 days after planting (DAP) and

maintained for 17 days. Plants were watered twice a day starting

at ZT8 (Zeitgeber Time) and ZT23. For more experimental de-

tails see Materials and Methods. The lines used were S. viridis

(accession A10), S. italica (accession B100), and eight randomly

selected RILs derived from a cross of S. viridis 3 S. italica

(Devos et al., 1998; Wang et al., 1998; Bennetzen et al.,

2012). An average of 15 plants per line per water treatment
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were loaded onto the system. Additional S. viridis and S. italica

plants were also loaded for parallel destructive physiological

tests.

The plants that received no water after 17 DAP died within 7 days

of treatment and were removed from the system leaving 33% FC

as the severest water-deficit treatment. Comparisons between

33% and 100% FC were the focus of subsequent analysis.

Figure 1B shows the volume of water added at each treatment

time point for S. viridis plants watered to 100% and 33% FC.

The differences between the two water treatment set points

can be seen clearly after the 33% pots complete their dry down

from full water 17–19 DAP. As the plants grow and transpire,

more water is needed to return the pots to their set points.

More water was added compared with the days surrounding 18

DAP when the second water application was delayed and 24

DAP when the target-weight point was raised to account for

increasing biomass of the plants (Figure 1B).

Setaria Image Acquisition

During the experiment, Setaria plants varied in height from 0.9 cm

to 54.5 cm, so a scaled field of view (adjusted optical zoom

level) was used during image acquisition to maximize the

image pixels (px) dedicated to plant material, and not back-

ground space. Consequently, plant traits measured in pixels

from images taken at different zoom levels are not directly com-

parable because of the difference in the field of view. A reference

object with known dimensions was imaged using the VIS side-

view and top-view cameras at different zoom levels. To compare

digital traits across zoom levels, scaling factors were calculated

for both area and length traits using zoom-scaling functions

(see Supplemental Experimental Procedures).

PhenoFront Database Access Tool

Image and water volume data from LemnaTec phenotyping

systems are stored in a PostgreSQL database, but images them-

selves are stored separately in raw format. To provide distributed

access to image and water treatment data, an independent data-

base interface tool (PhenoFront) was developed. It was neces-

sary to develop a new database access tool rather than use

existing open-source interface tools (Klukas et al., 2014)

because the image storage structure of the LemnaTec version

4.0 database changed significantly from previous versions.

PhenoFront has a convenient web-based user interface to the

phenotyping database and provides an experiment query-

building tool that allows users to extract specific image and water

treatment data. Importantly, PhenoFront was built with diverse

image types in mind (e.g. color vs grayscale; 8-bit vs 16-bit)

and allows access to images without conversion to a single

file format. Queries can be directly downloaded to the user’s

computer, or data can be downloaded to a remote server capable

of high-throughput image processing using utilities such as Wget

(http://www.gnu.org/software/wget/wget.html) or cURL (http://

curl.haxx.se/). PhenoFront is available at https://github.com/

danforthcenter/PhenoFront.

Datasets extracted with PhenoFront are structured by data

acquisition events (snapshot: weighing/watering, imaging) and

a single metadata text file contains the experimental and system
Mo
parameters associated with each event. Image metadata from

the experiment presented here include experiment identifica-

tion code; snapshot folder identification number; alphanumeric

barcode encoded with species identification, line identification,

water treatment group, and unique plant number; unique snap-

shot timestamp; weight and water volume information; individual

image file names included in the snapshot directory. The struc-

tured datasets can be easily read by analysis software and are

convenient for public data sharing.

Although strides have been made to create resources for image

processing on the iPlant cyber infrastructure (Kvilekval et al.,

2010), a dedicated centralized database for sharing published

plant phenotyping image data has not been designated.

Although a few plant phenomic datasets are publicly available

(Fahlgren et al., 2015), this is the largest publically available

dataset of above-ground plant tissue to date (79 200 images of

823 plants). Image data from this experiment are available via

http://plantcv.danforthcenter.org/pages/data.html in Portable

Network Graphics (PNG) and Joint Photographic Experts Group

(JPEG) formats. JPEG format images with lossy compression

consume approximately 11-fold less storage size, but compari-

sons of image datasets in JPEG and PNG format revealed signif-

icant differences in some analyzed traits (see Materials and

Methods). Establishing a dedicated centralized database that is

designed to deposit and access large plant phenomic datasets

and standardized metadata is vital for aggregating and curating

data for the community. The phenomics community will need to

collectively consider formats, data and metadata structure,

minimal information standards, ontologies, and other sharing

issues. Implementing these phenotyping standards will expedite

tool development and alleviate barriers to crop improvement.
Phenotype Extraction Using PlantCV Software

High-throughput plant phenotyping has the potential to improve

modeling of genotype by environment interactions and to expe-

dite identification of germplasm that could increase the yield

and productivity of crop plants. With numerous commercial and

custom-built image-based phenotyping platforms in existence,

it is unlikely that standard hardware will be used to capture

image-based phenomics data in the near future. Lack of standard

hardware thus requires each new platform to go through a signif-

icant initialization period and a gambit of validation experiments,

many of which are described in this study. Despite different hard-

ware platforms, image analysis and trait extraction are common

ground between image-based phenotyping platforms. Therefore,

open-source trait extraction software with a mechanism for com-

munity development will help to alleviate the phenotyping bottle-

neck on crop improvement.

Available commercial and open-source plant image processing

software range in their capabilities, flexibilities, and underlying

programming languages and largely focus on analysis of single

cells, leaves, roots, or plants with rosette architecture (http://

www.plant-image-analysis.org; Lobet et al., 2013). There are

analysis tools in the Plant Image Analysis database, such as

LemnaGrid (https://www.lemnatec.com) (Munns and Tester,

2008; Berger et al., 2010; Golzarian et al., 2011; Honsdorf et al.,

2014), the ImageJ (Abràmoff et al., 2004) plugin HTPheno

(Hartmann et al., 2011), and the Java-based open-source
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Figure 2. PlantCV Image Analysis Software Developed at the
Donald Danforth Plant Science Center.
(A) Automated identification of plant material from background. Plant is

identified (blue outline, right) from the original image (left).

(B) Example of traits extracted by PlantCV. Shape characteristics such as

convex hull (left), and height (middle) are extracted from visible images.

Differences in color can be visualized by pseudocoloring by HSV, LAB, or

RGB color channels (right). S. viridis is pseudocolored based on the value

channel of HSV color space.

(C) PlantCV analysis of traits over time under 100% FC and 33% FCwater

treatments. Traits such as biomass accumulation, growth rate, and color

can be tracked over time under experimental conditions, such as drought,

from data collected by PlantCV. S. viridis is shown pseudocolored based

on the value channel of HSV color space.

(D) Example of PlantCV extracted traits from plant species other than

Setaria. Brachypodium distachyon, Arabidopsis thaliana, and Camelina

sativa are pictured from left to right. Plants are pseudocolored based on

the value channel of HSV.

(E) Example of PlantCV analysis of an image of cassava captured by a cell

phone camera.

(F) Example of PlantCV analysis of an image of sweet potato captured by a

digital camera.
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Integrated Analysis Platform (IAP) (Klukas et al., 2014) that are

capable of analyzing larger model plants and crops with diverse

architectures (Supplemental Table 1). We developed the open-

source and open-development PlantCV image analysis plat-

form to emphasize the following features: flexible user-defined

analysis workflows; parallelizable image processing for fast

throughput; and a scripting language implementation that lowers

the barrier to community contributions that extend functionality. It

was important to move away from commercial software for

greater control and understanding of the image processing and

trait extraction algorithms used to process the data, as well as

the freedom to expand analyses at will. While some users may

prefer graphical user interfaces for software, script-based pro-

grams are easier to develop and the precise workflows are

detailed directly in the scripts themselves, enabling reproducible

research.

Extraction of temporal plant trait data from images occurs in

three steps: (1) isolation of plant material from background

(Figure 2A); (2) identification of features (traits) from isolated

plants (Figure 2B); and (3) analysis of traits across population,

treatments, and time (Figure 2C). PlantCV isolates plant

material from background, quantifies plant traits, and populates

an SQLite (https://www.sqlite.org/) database that is easily

queried for further analysis across treatments, genotypes, and

time. In debug mode, PlantCV creates annotated intermediate

images for each step of image analysis pipelines (e.g. outlining

plant perimeter), allowing users to verify that analysis steps

are working as intended. Although Setaria images from the

high-throughput Bellwether Phenotyping Platform are analyzed

here, PlantCV has been used to analyze a variety of plant

types (Figure 2D–2F) as well as images captured from non-

commercial imaging stations (Figure 2E and 2F). For the Setaria

experiment here, traits such as height, biomass, and plant

architecture were manually measured and are highly correlated

with traits computationally extracted by PlantCV (Figures 3–5).

Image datasets curated with manual measurements are

available at http://plantcv.danforthcenter.org/pages/data-sets/

2013/setaria_burnin2.html and are a resource for generating

further trait measurement algorithms.

PlantCV software is built upon the open-source libraries OpenCV

(Bradski, 2000), NumPy (Oliphant, 2007), andMatPlotLib (Hunter,

2007), and contains pipelines built withmodular functions that are

currently capable of automated analysis of color and grayscale

images from VIS, PSII, and NIR cameras. Separate pipelines

are used to process images from different camera types due to

differences in image size and dimensions, spectral channels

(e.g. color versus grayscale), special processing steps (e.g. PSII

imaging, see below), and other factors (e.g. lighting). PlantCV

was written in the Python programming language with hopes

that the greater phenomics community will utilize and extend its

functionality. Although Python is not as efficient as compiled

languages (e.g. C or Java) in terms of memory usage and

speed of execution (Fourment and Gillings, 2008), it is currently

more widely used by biologists and is arguably easier to learn

(Mangalam, 2002; Dudley and Butte, 2009). On a single

processor, PlantCV can process and extract data from 200–350

images per hour, depending on image size, and the modular

script-based architecture allows for easy parallelization. At the

Danforth Center, PlantCV is typically run on 10 CPUs. PlantCV

https://www.sqlite.org/
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Figure 3. Plant Height Estimated with PlantCV.
(A) Plant height estimated with PlantCV compared with manually

measured height. Data shown are for 173 randomly selected VIS side-

view images at four different zoom levels. The ordinary least squares

linear model with SE is plotted.

(B) Estimated plant height for S. viridis and S. italica plants from 11 to 33

DAP. Plants watered to 100% or 33% FC are shown. Local regression

(LOESS) fitted curves with SE are plotted for each genotype by water

treatment group. The arrowheads indicate the day that the 33% FC water

treatment started. See also Supplemental Figure 1.
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is an open-source resource under a GNU General Public License

(GPLv2) share-alike license that can be leveraged for the further

development of more complex trait identification modules.

PlantCV is also available via GitHub, providing a framework for

community contribution that has been successful for other

science and Python-based projects such as NumPy (�284

contributors) and MatPlotLib (�294 contributors) (Oliphant,

2007; Hunter, 2007). Community contribution helps to maintain

software permanence (Gentleman et al., 2004), which is often a

problem for bioinformatics tools maintained by individual

laboratories (Gilbert, 2004). PlantCV, PlantCV documentation,

tutorials, parallelization scripts, downstream analysis scripts,

and a contribution guide can be accessed at http://plantcv.

danforthcenter.org.

VIS Image Processing and Traits

The VIS imaging station on the platform captures visible light

(400–700 nm) images with two high-resolution (2454 3 2056

pixel) charge-coupled device cameras. One camera is mounted

above the plant and the second camera is side-mounted for

top- and side-view imaging, respectively. The plant carrier is

positioned on a piston lifter with a turner that can rotate the plant

360�. During the Setaria experiment, a single top-view and four

side-view (0�, 90�, 180�, and 270�) VIS images were acquired

per plant per time point. In total, Setaria plants were imaged

6399 times from 11–33 DAP for a total of 31 968 VIS images

(55 images per plant). The set of images collected for a single

plant in one imaging session is defined as a snapshot.

In general, PlantCV VIS image processing pipelines automatically

identify background material within the image, such as the

carrier, pot, soil, and side paneling. To mitigate plant identifi-

cation bias due to genotype, developmental age, abiotic treat-

ment, or other experimental parameters, plant material was

isolated after several stages of background removal, rather

than first thresholding for plant greenness. For a complete

description of the VIS image processing steps, please refer to
Mo
the Supplemental Experimental Procedures and view the

PlantCV online documentation.

Plant Height

Plant height was defined as the maximum vertical extent of the

plant from the top of the pot. For 173 randomly selected VIS

side-view images from all genotypes and treatments, plant height

(calibrated using the width of the plant carrier) was manually

measured using ImageJ (Abràmoff et al., 2004). For the same

image set, plant height was automatically estimated using

PlantCV with height scaled to correct for the camera zoom level

(see Supplemental Experimental Procedures). Ordinary least

squares regression analysis confirmed that PlantCV measured

plant height was a good estimator of manually measured height

and was robust across changes in camera zoom level (adjusted

R2 = 0.998, slope = 1.02; Figure 3A).

To analyze Setaria height more robustly at the population level,

estimated plant height was averaged between all four VIS side-

view images for each snapshot and the effect of genotype and

low water availability on height was calculated. Intrinsic height

differences under full-water conditions were observed for the Se-

taria genotypes, particularly from 23 to 33 DAP. S. viridis was

taller than S. italica from 23 to 33 DAP with a mean height ranging

from 26.7 to 50.7 cm compared with 22.8 to 49.4 cm, respec-

tively, but the 95%CIs overlapped, suggesting that the difference

was marginal at best (Figure 3B). The height of RIL102 was within

the range of the two parent lines but the other seven RILs were

transgressive; RIL161 was shorter on average than the parents

while the others were taller (Supplemental Figure 1). Height for

the tallest lines was underestimated because the camera field

of view in this experiment was not zoomed out enough to

completely capture the tallest plants. For example, truncated

plant height due to camera settings is noticeable from 15 to 20

DAP after which the field of view was expanded and plants

were fully imaged again (Figure 3B and Supplemental Figure 1).

Although thorough surveillance can be used to avoid lapses in

coverage due to sub-optimal camera settings, the large number

of potentially diverse plants on high-throughput systems makes

complete oversight challenging. A better approach would be to

add real-time analysis that raises alarm to potential framing

issues once preset threshold boundaries are reached. The paral-

lelized rate of PlantCV analysis permits future experiments to

implement real-time boundary detection.

In addition to intrinsic height phenotypes, the impact of limited

water availability on plant height was also measured. S. viridis

plants watered to 33% FC starting 17 DAP had a slower ver-

tical growth rate than plants at 100% FC from 21 to 33 DAP

(linear change in height = 2.1 and 2.5 cm/day, respectively;

Figure 3B). In contrast, S. italica plants from 100% and 33%

FC groups did not have significantly different vertical growth

rates, suggesting that S. italica plant height is not tightly

coupled to water availability (linear change in height = 2.5 cm/

day; Figure 3B). Alternatively, these results could suggest that

S. viridis responds to extra water availability with more growth

while S. italica does not. Of the 10 lines analyzed, S. viridis

has the largest difference in height when comparing the 33%

and 100% FC treatment groups (Supplemental Figure 1). The

difference in height for the RILs was either similar to S. italica

or was intermediate between the two parents (Supplemental

Figure 1).
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A

C D

B Figure 4. S. viridis and S. italica Respond
Differently to Water-Limited Conditions.
(A) Above-ground fresh-weight biomass modeled

using shoot and leaf pixel area from four side-

view VIS images. Data shown are for 41 plants

for which destructive fresh-weight biomass was

measured throughout the experiment. The ordi-

nary least squares linear model with SE is plotted.

(B–D) Data shown are for S. viridis and S. italica

imaged from 11 to 33 DAP. Plants watered to

100%or 33% FC are shown. Arrowheads indicate

the day that the 33% FC water treatment star-

ted. (B) Modeled fresh-weight biomass. Three-

component logistic growth curves with 95% CIs

are plotted. (C) Absolute growth rates over time

with 95% CIs. (D) Water-use efficiency, accumu-

lated fresh-weight biomass divided by cumulative

water added. LOESS fitted curves with SE are

plotted. (C and D) see color key in (B). See also

Supplemental Figures 2 and 3.
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Above-Ground Biomass

Throughout the experiment, 41 S. viridis and S. italica plants

randomly selected from the full-capacity water group were

collected and the above-ground fresh- and dry-weight biomass

were recorded. The images acquired immediately prior to collec-

tionwere analyzedwith PlantCV tomeasure plant traits that could

be used to model biomass. Linear modeling was done with three

PlantCV measurements: side-view area, the sum of the above-

ground plant pixel area from all four side-view VIS images; top-

view area, the plant pixel area from the single top-view VIS image;

and plant height, as described above. The initial model included

side-view area, top-view area, and height, adjusted for zoom

level, and all pairwise interaction terms. A stepwise model selec-

tion procedure was done using the Akaike’s Information Criterion

(Bozdogan, 1987), which resulted in the reduced model:

Mfw = 3:7553 10�5Asv � 0:2704

where Mfw is fresh-weight biomass and Asv is side-view area

(adjusted R2 = 0.983; Figure 4A). Dry-weight biomass was also

modeled efficiently with side-view plant pixel area (adjusted

R2 = 0.976; Supplemental Figure 2). It was hypothesized that

residual variation in biomass could be explained by plants that

were partially out of frame or by genotype. PlantCV records

when plants extend to or past the border of each image, and

the model including the out-of-frame status of each plant was

accepted over the reduced model (p < 0.01, F-test) but only

slightly improved the model (adjusted R2 = 0.986). In contrast,

genetic background did not improve the model significantly, sug-
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gesting that biomass estimation for S. viridis

and S. italica is robust to Setaria species

differences, at least within the conditions

tested.

Growth Rates and Response to Water

Availability

Image-based biomass estimates were

used to quantify the impact of limited water

availability on Setaria fresh-weight biomass

(Figure 4 and Supplemental Figure 3). Non-

linear least squares regression was used to
estimate the growth parameters (three-component logistic

model) for each group (genotype by treatment) (Figure 4B and

4C) (Paine et al., 2012). Under water deficit, S. italica and

S. viridis grew at similar rates with a maximum absolute growth

rate at �25 DAP of 1.7 (95% CI, 1.61–1.78 g/day) and 1.8 g/day

(95% CI, 1.72–1.89), respectively (Figure 4B and 4C). In

contrast, under 100% FC treatment, the maximum absolute

growth rate of S. viridis was 0.6 g/day more than S. italica (3.0

and 2.4 g/day, respectively; 95% CIs, 2.96–3.10 and 2.38–2.48

g/day, respectively) and was reached 2 days earlier (24 and 26

DAP, respectively) (Figure 4C). As a result, the impact of water

limitation on fresh-weight biomass was larger and observed

more quickly in S. viridis compared with S. italica. S. viridis wa-

tered to 33% FC starting at 17 DAP accumulated significantly

less biomass relative to the control group from 19 DAP until the

end of the experiment (95% CI, 0.6–2.4 g; Figure 4B). S. italica

watered to 33% FC accumulated significantly less biomass

relative to the control group at 28 DAP until the end of the

experiment (95% CI, 1.8–7.3 g; Figure 4B). Plant growth and

response to the environment is a dynamic process and non-

destructive phenotyping was key to understanding the differ-

ences between S. viridis and S. italica. For example, although

S. viridis grows faster and earlier than S. italica under 100% FC

treatment, biomass at 33 DAP was similar so end-point biomass

measurements would have missed the growth differences be-

tween S. viridis and S. italica (Figure 4B and 4C).

Integrated Water-Use Efficiency

The ability to measure and record the volume of water applied to

individual plants (Figure 1B) in combination with the estimated
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Figure 5. Tiller Count Modeled from
Spatial-Independent Morphological Char-
acteristics.
(A) Examples of height/width ratio variation from

randomly selected images of plants 25–26 DAP.

(B) Added-variable plots of fresh-weight biomass

and height/width ratio from 195 randomly selected

images. The ordinary least squares linear model

for each partial regression is plotted.

(C)Relationship betweenmanually measured tiller

count from 646 randomly selected images and

model-predicted tiller count. The line y = x is

plotted.

(D) Model-predicted tiller count for S. viridis and

S. italica plants from 11 to 33 DAP. Plants watered

to 100% or 33% FC are shown. Arrowheads

indicate the day that the 33% FC water treatment

started. See also Supplemental Figure 4.
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biomass of plants over time (Figure 4B) provides a framework

for quantifying plant intrinsic water-use efficiency (WUE). Here

intrinsic WUE is operationally defined as the amount of biomass

accumulated per milliliter of water applied (units, mg/ml). No

significant difference in WUE was observed for S. viridis plants

watered to 100% or 33% FC (q > 0.05; Figure 4D). Therefore,

the amount of S. viridis accumulated biomass is proportional to

the volume of water supplied. In contrast, S. italica plants had

lower WUE at 100% FC relative to 33% FC, with significant

differences observed from 22 to 27 DAP (q < 0.05; Figure 4D).

This suggests that S. italica uses water less efficiently under

water-sufficient conditions.
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Plant Architecture

The traits discussed above do not require

knowledge of specific plant architecture but

architectural phenotypes such as tillering

and leaf angle can have a significant impact

on plant performance (Warnasooriya and

Brutnell, 2014). Known differences in plant

architecture between the wild S. viridis and

domesticated S. italica include the number

of axillary branches and tiller number

(Darmency et al., 1987; Doust and Kellogg,

2006; Doust, 2007b; Doust et al., 2009).

Computational 3D reconstruction of plant

architecture from 2D images would promote

accurate estimates of tiller count but

would have a significant impact on imaging

throughput because of the increase in

images per plant per time point needed to

enable 3D reconstruction (Phattaralerphong

and Sinoquet, 2005; Paproki et al., 2012).

Modeling is an alternative approach that

can be used to predict the number of

tillers given one or more morphological

parameters that are more easily measured.

In a first attempt at generating a predictive

model for Setaria architecture, tiller number,

tiller angle (angle between the twooutermost

tillers), and leaf angle (angle between the leaf
and tiller of the first leaveson the twooutermost tillers) valueswere

measured using ImageJ (Abràmoff et al., 2004) on 58 randomly

selected images of plants 25 and 26 DAP. The results were

compared with two morphological traits that are simple to

calculate using PlantCV: height/width ratio (HW, height divided

by extent-x; Figure 5A) and solidity (plant area divided by

convex hull area). HW was significantly correlated (p < 0.01) with

all three manually measured traits but the best model for HW,

which accounted for 37% of the variance in an ANOVA analysis,

included only tiller angle and leaf angle (see Materials and

Methods). Solidity was not significantly correlated with any of

the manually measured traits. While the HW ratio is not
1535, October 2015 ª The Author 2015. 1527
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inherently ameasureof a singleplant architecture trait, it can serve

as an easily obtainable proxy for further analysis. To generate a

predictive model for tiller count, HW and several other traits

were examined. Tillers were manually counted for 195 randomly

selected images. HW, solidity, fresh-weight biomass, width

(extent-x), and height were tested as potential explanatory vari-

ables for manual tiller counts. Ordinary least squares regression

was used to generate a model for the number of tillers:

TC= 0:220Mfw � 2:19HW + 5:26

where TC is the number of tillers, Mfw is fresh-weight biomass,

and HW is the height/width ratio. The tiller model explained

64% of the variation in tiller number (Figure 5B). To further test

the tiller model, tillers were counted for a second set of 646

randomly selected images. The accuracy of the tiller model to

predict tiller number in the second set of 646 images was

assessed and the mean difference between predicted and

manual tiller number was 0.92 tillers (95% CI, 0.80–1.04 tillers;

Figure 5C). Although there are clearly other variables that

contribute to the tiller model, the predicted tiller count model

generated with spatial-independent morphological characteris-

tics can serve as a proxy measurement of Setaria architecture.

The tiller count model was used to predict tiller numbers in

S. viridis, S. italica, and the eight S. viridis 3 S. italica RILs

under 100% FC and 33% FC water treatments. For all

Setaria genotypes, tiller number decreased with reduced-water

treatment but the intensity and speed of response varied

(Figure 5C and Supplemental Figure 4). The predicted tiller

count for S. viridis is greater than that for S. italica under both

100% FC and 33% FC water conditions (Figure 5D), which is

consistent with known architectural differences between the

two genotypes (Darmency et al., 1987; Doust and Kellogg,

2006; Doust, 2007b; Doust et al., 2009). Predicted tiller number

appears to be an introgressive trait for the RILs analyzed

(Supplemental Figure 4) and can be genetically mapped in a

larger S. viridis 3 S. italica RIL population.

Color Analysis

Color is often used to gauge plant health in response to biotic and

abiotic treatment, or to identify lines that have possible defects in

pigment development and thus changes in photosynthesis

(Albrecht-Borth et al., 2013; Kremnev and Strand, 2014; Kunz

et al., 2014; Satou et al., 2014; Neilson et al., 2015). For each

identified plant pixel, PlantCV records intensity values of color

data for each of the three color channels of RGB (red, green,

blue), HSV (hue, saturation, value), and LAB (lightness, green-

magenta, blue-yellow) color space, yielding a set of three

histograms for each color space. The RGB data are presented

here because images are captured in RGB color space. Results

from interpolated HSV and LAB color space are included in the

Supplemental Information but interpretations of these results

concur with the RGB color space (Supplemental Figures 5–8).

The VIS images obtained via PhenoFront are 8-bit color images,

therefore each pixel in each channel can have a maximum inten-

sity value of 28 or 256. PlantCV was used to normalize the Setaria

color histograms by the number of plant pixels (plant size) and

these values are averaged by the four side-view angles.

Color data were evaluated to determine if water treatment

effects could be distinguished 25–26 DAP in S. viridis where
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there is a significant difference in biomass under reduced

water (Supplemental Figures 5 and 6). Principal component

analysis (PCA) visibly separated full-water from reduced-

water treatment along PC2, which captures 16% of variation

(Supplemental Figures 5 and 6). Spearman correlation analysis

found that PC2 was significantly negatively correlated (p <

0.01; rho = �0.7056) with water treatment 25–26 DAP in

S. viridis. Principal component regression found that a two-

component model of PC1 and PC2 covers 62% of the variation

seen in treatment 25–26 DAP (Supplemental Figures 5 and 6).

Therefore, Setaria color can be used to distinguish water

treatments 25–26 DAP. PCA using all RGB color data as

explanatory variables from S. viridis 17 and 18 DAP did not

visibly separate full water from 33% FC (Supplemental

Figures 5 and 6) and a two-component regression model

included only 0.45% of the variance explained by treatment.

Consequently, Setaria color does not appear to be as early an

indication of drought as biomass.

Color analysis was able to discriminate plant genotypes before

treatment was applied, which was not the case for estimated

plant biomass (Supplemental Figure 3). PCA of RGB color

data prior to water treatment (11–12 DAP) found that PC1

captures 41% of variation in color and separates RIL161

(Figure 6A) from the other genotypes. The RIL161 line was

distinguishable from the other Setaria lines and appears to be

pale in pigmentation (Figure 6B). The seven other RIL lines

(Figure 6A) grouped along PC1 and PC2 with the parent lines,

S. viridis (Figure 6A, left) and the majority of S. italica

(Figure 6A, right). Seventeen of 112 S. italica plants clustered

with RIL161 plants (Figure 6A, right). Investigation of S. italica

plants that clustered with the RIL161 plants revealed that they

are paler in color compared with S. italica that group with

S. viridis and the other RILs (Figure 6B). The color PC1 trait

appears to be a transgressively segregating phenotype in

RIL161 compared with the majority of parent phenotypes and

may be genetically mapped in the larger S. viridis 3 S. italica

RIL population. The color PC1 trait may also be associated

with a photosynthetic trait, since RIL161 plants are not only

pale but also shorter on average compared with other lines

(Supplemental Figure 1).
PSII Image Traits

Formore information onPSII imageprocessing, please refer to the

Supplemental Experimental Procedures. Comparison with plant

architecture traits from the VIS system revealed that Fv/Fm is

strongly correlated with plant height in a Spearman correlation

analysis (rho = �0.859, p < 0.01; Supplemental Figure 9). To

further test if plant height significantly influences Fv/Fm
measurements, a 3D-printed staggered platform was designed

and built to examine �4 cm2 of excised Nicotiana benthamiana

leaf tissue at fixed heights (Supplemental Figure 9B and 9C).

N. benthamiana was used because the leaves are large enough

for tissue from a single leaf to be used at all four platform

levels. PSII analysis of the 3D-printed platform confirmed

that height significantly negatively correlates with Fv/Fm (r =

�0.976; p < 0.01; Supplemental Figure 9D). One explanation

for this correlation is that Fmin may be disproportionately

underestimated relative to Fmax in shorter plants resulting in an

artificially inflated Fv/Fm value. Although PlantCV is still a useful
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Figure 6. Before Water Treatment Is Applied
(11–12 DAP) Color Can Distinguish Setaria
Genotypes.
(A) PCA of RGB color for all Setaria genotypes

before treatment is applied (11–12 DAP). PC1 and

PC2 are plotted for S. viridis (orange), S. italica

(green), RIL161 (purple), and seven other S. viridis3

S. italica RILs (gray).

(B) S. italica (yellow circle in (A); yellow boxed

image) found among R161 (blue circle in (A); blue

boxed image) are more similar in color than S. italica

(red circle in (A); red boxed image) that group with

other lines (gray). VIS images are pseudocolored

based on the value channel in HSV color space. See

also Supplemental Figures 5–8.
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tool for analyzing photosynthetic efficiency, alterations in the

physical configuration of the PSII imaging station are necessary

to prevent height differences from confounding photosynthetic

efficiency measurements.
NIR Image Processing and Traits

The NIR imaging station captures NIR light (900–1700 nm) using

two cameras (320 3 256 pixel) mounted for top- and side-view

imaging with a rotating lifter to allow for multiple side-view

images. Four side-view (0�, 90�, 180�, and 270�) NIR images

were captured per plant per time point. The NIR top-view camera

was partially functioning during the experiment so top-view im-

ageswere not taken at all time points. In addition, the background

signal of soil in the top-view NIR images makes plant signal isola-

tion difficult so only side-view NIR images were used in the anal-

ysis. In total, Setaria plants were imaged 6399 times from 11 to 33

DAP for a total of 25 596 NIR side-view images.

PlantCV isolation of plant material from other background com-

ponents in NIR grayscale images is achieved through several

image processing techniques, including background estima-

tion/removal and object of interest sharpening to improve the

effectiveness of binary thresholding. Once the plant is identified,

the grayscale NIR pixel-level intensity is summarized into a

histogram containing 256 bins, where each bin contains the

proportion of plant pixels exhibiting the corresponding gray-

scale intensity value. Shape attributes described above for VIS

imaging are also recorded for each NIR image for quality con-

trol purposes. Comparison of shape measurements between

imaging stations allows for the detection of outliers due to arti-

facts in the image processing pipelines. Similarity of NIR signal
Molecular Plant 8, 1520
within snapshot sets and image classes (ge-

notype by treatment by DAP) using Chi-

squared and Earth Mover’s Distances

were also used to assess data quality. For

more information on NIR image pro-

cessing please refer to the Supplemental

Experimental Procedures.

NIR Signal Analysis

The effects of camera zoom level can be

clearly observed as the camera imaging

configuration changes from 3.13 to 1.43

optical zoom at 21 DAP (Figure 7A).
Comparison of 100% and 33% FC water treatments as the

mathematical difference of treatment-averaged histograms illus-

trates a shift in the distribution of NIR signal histogram toward

increased NIR signal reflectance in drought-treated plants

(Figure 7B).

PCA was used to summarize the changes observed in the NIR

signal histograms. Due to the shifts in the NIR signal between

zoom levels, PCAwas donewithin each zoom level. While the first

principal components (PC1s) at each zoom level are not directly

comparable, the loadings indicate that they are driven by the

same phenomenon; the two sides of the loading histograms

with opposite signs indicate a shift from higher absorbance

pixels, which have been associated with higher water content in

previous studies, to lower absorbance pixels (Figure 7C and

7D) (Carter, 1991; Peñuelas and Filella, 1998; Seelig et al.,

2008, 2009). PC1 captures a larger proportion of variation

(33.5%) within NIR signals at the widest zoom level (1.43),

corresponding to later growth stages and more extended

drought treatment, than PC1s from earlier narrower zoom levels

(14.9% and 25.9% at 3.93 and 3.13, respectively). Significant

differences of PC1 values (n = 8; p < 0.01) compared between

treatments (100% and 33% FC) were observed in both S. viridis

and S. italica parental genotypes 23 DAP (Figure 8). The NIR

system measures wavelengths of light that are absorbed by

water but signal transmittance and reflectance can also

change with differences in leaf thickness or tissue composition

(Seelig et al., 2008, 2009; Neilson et al., 2015). Therefore, shifts

in NIR signal due to differences in leaf water content cannot

be distinguished from changes in leaf thickness or tissue

composition in response to water deficit. More advanced

imaging analysis, perhaps integrating VIS data, or additional
–1535, October 2015 ª The Author 2015. 1529
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C D

B Figure 7. Measurements Derived from the
NIR Camera System.
(A)Average NIR signal distribution of well-watered

plants throughout the experiment. Bins corre-

sponding to signal intensity levels 0–255 are

plotted along the x-axis, while experimental days

are plotted along the y-axis. The proportion of

pixels that fall into each bin are expressed as a

grayscale shade (0% black, larger percentages

are increasingly more white). Color bars along the

y-axis illustrate zoom range (3.93 = light blue, 3.1

3 = blue, 1.43 = dark blue).

(B) Difference of average NIR signal distribution

between plants receiving 100% and 33% FC.

Signal bins shaded blue have an increased pro-

portion of pixels in images of plants receiving

100% FC water; signal bins shaded red have a

greater proportion of pixels in images receiving

33%FCwater; white corresponds to no difference

between images.

(C) A plot of PC1 loadings (3.93 = light-gray, 3.13

= mid-gray, 1.43 = black).

(D) A plot of the average signal difference between

water treatment levels 100% and 33% FC (3.93 =

light-gray, 3.13 = mid-gray, 1.43 = black).
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imaging hardware might be utilized to distinguish between these

two water-deficit responses.
Integrated Analysis

While each extracted trait can be treated individually, multimodal

traits can be used to detect artifacts or gain greater insight on

biological responses. For example, correlations between plant

height and Fv/Fm signal were used to identify the physical limita-

tions of the PSII imaging station and examining biomass with

watering data expanded understanding of WUE. Examining

correlation between traits may identify simple biometric relation-

ships inherent to a biological system (such as the positive

correlation between plant biomass and height; Supplemental

Figure 10) or more intricate relationships that are dependent

on treatment or temporal factors (relationship between NIR

PC1 and VIS color PC1 and PC2; Supplemental Figure 10). An

important component of trait integration is an understanding of

which traits are reporting precisely on genotype or treatment

effects. On four days that span the experimental period,

variance due to genotype, treatment, and genotype by

treatment across the traits discussed was examined using a

simple linear model (Table 1). Emphasizing the temporal

dependence of the measured traits, there were notable shifts

in which factor accounted for the largest components of

variation at different time points. In the six days from 19 to 25
1530 Molecular Plant 8, 1520–1535, October 2015 ª The Author 2015.
DAP, as the cumulative water deficit

became more severe, the treatment term

accounted for a much larger portion of

the biomass, tiller count, and NIR PC1

variance, a trend that continues through 31

DAP. For WUE, treatment had the largest

effect 19 DAP, reflecting the dynamic and

differing response to water availability

between S. viridis and S. italica (Figure 4).
Temporal measurements allowed the identification of

mechanistic differences in drought response, which would be

indistinguishable with only end-point measurements.

Genotype accounted for at least 17.9% of the variance at one or

more time point for all the traits described in Table 1, including

PCA traits from color and NIR signal, suggesting that these

traits will be tractable targets for temporal genetic and gene by

environment analysis. Combined with the variance accounted

for by treatment, it is clear that traits measured by the VIS and

NIR systems can be used to investigate plant responses to a

changing environment. An outstanding question is whether the

distinct image types are contributing independent insights to an

experiment. While analysis of eight RIL lines was sufficient to

identify distinct responses in the two parents for multiple traits,

it is not enough to determine if the traits are correlated or

segregating independently from each other. Analysis of larger

genetic populations is necessary to identify the underlying

genetic loci for each trait and to determine if they segregate

independently.

It is important to note that the analysis routines presented here are

just a starting point for the data that can be extracted from the im-

ages collected. The most significant finding from the analysis is

that wild S. viridis and domesticated S. italica have different re-

sponses to water availability. This result comes from analysis of



Figure 8. NIR PC1 Throughout Time While
Zoom = 1.43 for Setaria genotypes
S. viridis (A10) and S. italica (B100).
Plants watered to 100% or 33% FC are shown.

Local regression (LOESS) fitted curveswith SE are

plotted for each genotype by water treatment

group.
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pixel-estimated biomass that does not require integration of plant

architecture for accurate measure. However, integrating plant

architecture by including identification of leaf and stem pixels as

well as segmenting the plant by developmental age could extract

further information from VIS and NIR images. Making the images

andPlantCV software publically available is intended to encourage

other researchers to join in on addressing these questions.
CONCLUSIONS

There are three essential components of the Bellwether Pheno-

typing Platform: tightly controlled and recorded environmental

variables, automated image capture, and scriptable analysis by

PlantCV. With all of the components in place, experiments can

be conducted on a scale not previously possible. For example,

without the four automatic watering stations in the growth

chamber, maintaining the moisture level of 1140 pots in a high-

light high-temperature environment would require considerable

labor for the duration of the experiment. The design decisions

that led to the high capacity of the platform permit repeated

measurements of hundreds of lines with replicates and multiple

treatments. Analysis by PlantCV allows for flexible and timely

image processing and analysis. Open-source PlantCV software

is platform independent, allowing it to scale from controlled-

environment growth chamber phenotyping to field phenotyping.

PlantCV is currently used to process images from four diverse

custom-built imaging platforms at the Donald Danforth Plant Sci-

ence Center. The image dataset provided by this study can be

utilized to extend PlantCV function by extracting further architec-

tural traits that are also important to crops with similar structure,

such as maize and sorghum.

In this study, four different water regimes were imposed with

multiple replicates for each line/treatment combination. Although
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only 10 Setaria lines were examined in the

present study, this work showed that

S. viridis and S. italica have fundamentally

different responses to water availability.

The wild accession S. viridis adjusts its

growth to utilize all of the available water,

while the domesticated S. italica is less

efficient at converting water to biomass un-

der high-water availability. Although the

domesticated crop S. italica is known to be

drought tolerant from previous studies (Li

and Brutnell, 2011), differences between

S. viridis and S. italica response to water

availability would not have been detected if

only end-point biomass orWUEwere exam-

ined, highlighting the importance of tempo-

ral examination of traits. The eight randomly
selected RILs displayed variation between the parents suggest-

ing, unsurprisingly, that the observed traits are controlled by mul-

tiple loci. Therefore, future phenotyping studies using this system

that examine a larger population of S. viridis 3 S. italica RILs

will likely be successful in extracting multiple time-dependent

drought-related quantitative trait loci.

MATERIALS AND METHODS

Plant Growth

Setaria Experiment Growth Details

White/gray pots (diameter 10 cm [4 inches]) from Hummert were pre-filled

with�473ml ofMetroMix360 soil and 0.5 g of Osmocote Classic 14-14-14

fertilizer (Everris, USA) was manually distributed to the top of each pot.

S. viridis (A10), S. italica (B10), and eight RILs (RIL020, RIL070, RIL098,

RIL102, RIL128, RIL133, RIL161, RIL187) from an S. viridis 3 S. italica

population (Devos et al., 1998; Wang et al., 1998; Bennetzen et al.,

2012) were planted, barcoded, then allowed to germinate for 9 days in a

Conviron growth chamber before being loaded into the Conviron growth

area of the Bellwether Phenotyping Platform. Barcoded information

included genotype identification, water treatment group, and a unique

pot identification number. During germination, plants were grown under

a long-day photoperiod (16 h day/8 h night) at 31�C day/21�C night.

During the germination period, the maximum light intensity of the

Conviron chamber was used (230 mmol/m2/s). At 9 DAP, germinated

plants were loaded into the Conviron growth chamber of the Bellwether

Phenotyping Platform using a random block design. In the phenotyping

facility, plants were grown under a long-day photoperiod (16 h day/8 h

night) at 31�C day/21�C night at a light intensity of 500 mmol/m2/s using

metal halide and high-pressure sodium lamps to deliver a broad spectrum

of light for plant growth: 20.7% at 400–500 nm, 33.3% at 500–600 nm,

26.8% at 600–700 nm, 3.3% at 700–800 nm, and 15.8% at 800–900 nm

(measured with Apogee Instruments Spectroradiometer PS-100).

Water Treatments

The 10-cm pre-filled pots were dried down to remove excess moisture

from the soil. After dry down, the average dry pot, soil, and Osmocote

weight was 73 g. To determine soil volume water content, measured
1535, October 2015 ª The Author 2015. 1531



Variance type Biomass Height Tiller count WUEa RGB.PC1b RGB.PC2c NIR.PC1d DAP

Genotype 14.8 61.3 53.2 20.6 75.1 65.8 38.9 15

Treatment 0 0 0 0 0 0 0

Genotype 3 treatment 5.2 2.4 0 5 0 1.8 2.5

Residual 80 36.3 46.8 74.5 24.9 32.4 58.6

Genotype 17.9 22.8 36.5 20.2 62.6 39.4 29.5 19

Treatment 4.8 0.4 2.8 27.8 0 0.3 6.7

Genotype 3 treatment 7.2 5.3 5.2 4.4 0 1 5

Residual 70.1 71.5 55.5 47.5 37.4 59.4 58.8

Genotype 14.4 65.4 11.5 22.2 66.3 60.9 30.5 25

Treatment 55.4 1.8 66.9 8.2 13.9 0 56.7

Genotype 3 treatment 4.6 4 6.7 5.6 0.9 7.3 4.1

Residual 25.5 28.8 14.9 64 18.9 31.8 8.7

Genotype 2.7 42.8 9.8 7.7 62.5 8.3 8.3 31

Treatment 83.7 7.3 78.9 8 7.7 1 75.5

Genotype 3 treatment 2.1 8 1.9 0 5.6 13.9 3.8

Residual 11.5 41.9 9.4 84.3 24.1 76.8 12.5

Table 1. Proportion of Variance Explained by Experimental Factors.
Variance associated with factors genotype, experimental treatment, the interaction of genotype and treatment was assessed at four time points

(15, 19, 25, 31 DAP). Unexplained variance is denoted as residual variance. See also Supplemental Figure 10.
aWater-use efficiency.
bThe color (red, green, blue) first principal component.
cThe color (red, green, blue) second principal component.
dThe near-infrared first principal component.
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amounts of reverse osmosis water were added to the dry soil and allowed

to absorb for 1 h. Volume water content (VWC) was determined by a

Decagon Devices GS3 soil moisture sensor and ProCheck Instantaneous

data logger. The full-capacity water treatment group was assigned a

target weight of 625 g. Given a carrier weight of 335 g and soil/pot dry

weight of 73 g, the full-capacity treatment group corresponds to 217 ml

of available water and a soil VWC of �48%. Initially, five treatment group

target weights were defined as 100%, 75%, 50%, 25%, and 0% of the

soil/pot wet weight, which corresponded to the target weights 625 g,

552.5 g, 480 g, 407.5 g, and 0 g. However, accounting for only relative wa-

ter availability, the treatments were 100% FC (217 ml; 48% VWC), 66.5%

FC (144.5 ml; 31% VWC), 33% FC (72 ml; 14% VWC), and 0 ml for the

remaining groups.

Hardware

The LemnaTec Scanalyzer 3DH-T is controlled using LemnaControl soft-

ware. Image and water treatment data from the phenotyping facility are

transferred to a PostgreSQL database (LemnaDB) for storage. Pheno-

Front (https://github.com/danforthcenter/PhenoFront) is used to access

image data from the local LemnaTec database before image analysis

with PlantCV (http://plantcv.danforthcenter.org/). For more information

on the Conviron growth chamber specifications and camera specifica-

tions, please see the Supplemental Experimental Procedures.

PlantCV Image Processing and Data Capture

For a list of current measurements extracted by PlantCV, please refer to

Supplemental Table 3. For more information on image processing

pipelines, please refer to the Supplemental Experimental Procedures

and for an example pipeline workflow, see Supplemental Figure 11.

Images were processed using 10 CPU (Intel Xeon E7-8867L) on a Dell

PowerEdge M910 blade server running CentOS 6.5. The code used for

this manuscript was PlantCV release v1.0 and is available at GitHub
1532 Molecular Plant 8, 1520–1535, October 2015 ª The Author 2015.
(http://github.com/danforthcenter/plantcv) and archived at Figshare

(http://dx.doi.org/10.6084/m9.figshare.1447311).
Statistical Analysis and Modeling

All statistical analyses were done in R (R Core Team, 2014). Additional

packages used include analogue (Simpson, 2007), car (Fox and

Weisberg, 2011), emdist (Urbanek and Rubner, 2012), ggplot2

(Wickham, 2009), grid (R Core Team, 2014), gridExtra (Auguie, 2012),

lattice (Sarkar, 2008), lme4 (Bates et al., 2014), lubridate (Grolemund and

Wickham, 2011), MASS (Venables and Ripley, 2002), mvtnorm (Genz

and Bretz, 2009; Genz et al., 2014), nlme (Pinheiro et al., 2014), pls

(Mevik et al., 2013), plyr (Wickham, 2011), qvalue (Dabney and Storey,

2015), rgl (Adler and Murdoch, 2014), scales (Wickham, 2014), and

VennDiagram (Chen, 2014). R scripts for all analyses are provided in

Supplemental Table 4. Detailed methods for the statistics and modeling

throughout this article can be found in the Supplemental Experimental

Procedures.
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