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Abstract

Humic substances (HS) are complex mixtures of natural organic material which are found almost everywhere in the
environment, and particularly in soils, sediments, and natural water. HS play key roles in many processes of paramount
importance, such as plant growth, carbon storage, and the fate of contaminants in the environment. While most of
the research on HS has been traditionally carried out by conventional experimental approaches, over the past 20
years complementary investigations have emerged from the application of computer modeling and simulation
techniques. This paper reviews the literature regarding computational studies of HS, with a specific focus on
molecular dynamics simulations. Significant achievements, outstanding issues, and future prospects are summarized
and discussed.
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Introduction
Humic substances (HS) consist of a large variety of
natural organic molecules that originate from the decom-
position, and related microbial activity, of dead biological
material, especially plant tissues [1]. HS are ubiqui-
tous in the natural environment where they contribute
to the regulation of many crucial ecological and envi-
ronmental processes. For example, HS sustain plant
growth and terrestrial life in general, and control the
fate of environmental contaminants by acting as sor-
bents for toxic metal ions, radionuclides, and organic
pollutants [2-4]. Furthermore, HS account for most of
the planet’s organic material, and represent the most
abundant reservoir of carbon [1,5]. In fact, HS are
receiving growing attention in recent years because
of their potential role in land management strategies
aimed at promoting carbon sequestration, to ultimately
reduce atmospheric CO2 and hence help tackle climate
change [5].

Despite much research carried out over many decades
now, the detailed nature of HS is still not fully under-
stood. While main molecular building blocks have long
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been identified as hydrocarbon, quinone, phenol, cate-
chol, and sugar groups (Figure 1), the crucial issue of
how exactly these chemical moieties are organized at the
molecular and supramolecular levels is still debated. A
complicating factor is represented by the high variabil-
ity of HS, as their composition depends on the specific
ecosystem where they originate, in terms for instance of
vegetation, climate, and topography. Following a poly-
mer analogy, a popular early hypothesis described HS
as collections of organic macromolecules, with molecu-
lar weights of up to several tens of thousands or even
hundreds of thousands of grams per mole [1,6,7]. How-
ever, the current consensus, supported by the most recent
experimental evidence, describes HS as heterogeneous
supramolecular mixtures of relatively small molecules,
with molecular weight of a few thousands of grams per
mole, which associate dynamically through weak (non-
covalent) interactions, especially hydrogen bonds and
hydrophobic forces [8-14]. According to this hypothe-
sis, HS are also capable of self-assembling into micel-
lar structures, whereby an inner hydrophobic core is
shielded from outer water through interfacial hydrophilic
regions [15-17].

Over the past 20 years, traditional experimental inves-
tigation of HS has been compounded by various com-
puter modeling and simulation approaches. This review
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Figure 1 Common HS chemical groups. Chemical structures of the main molecular building blocks forming HS.

focuses mainly on computational studies of HS conducted
using the molecular dynamics method. After an intro-
duction to the main methodological aspects, the avail-
able literature is categorized, summarized, and critically
discussed.

Review
The molecular dynamics simulation method
Molecular dynamics (MD) is a computer simulation tech-
nique which is widely used in science and engineering,
and is employed to obtain equilibrium and transport
properties for collections of discrete particles. MD is
a powerful method to simulate matter at the molecu-
lar scale; applications can be found for a wide range
of systems, from simple gases and liquids [18-22] to
various complex materials including proteins [23-26],
lipid membranes [27-35], polymers [36-39], and car-
bon nanostructures [40-42]. Popular computer programs
that implement MD include LAMMPS [43,44], GRO-
MACS [45], AMBER [46], GROMOS [47], DL_POLY [48],
and CHARMM [49]. In this section, the main aspects
of the MD method are summarized; more details can
be found in dedicated books [50-54] and review articles
[55-58].

The key components of the main MD algorithm are
reported in Algorithm 1.

The first stage typically involves initializing the cal-
culation by supplying the computer program with the
coordinates of all atoms in the system (x), together with
the models (V ) which determine how the atoms interact.
Such models are typically called potentials, or force fields.

Algorithm 1 Basic workflow of a typical MD simulation
• Stage 1) Calculation is initialized:

– Starting positions of atoms: x
– Model (“force field”) for interaction between
atoms: V ⇓

• Stage 2) Main calculation loop:
– (i) Compute force on every atom: f = −∇V
– (ii) Use force on every atoms by a single timestep
– Repeat (i)-(ii) for the required number of timesteps

⇓
• Stage 3) Output data:

– Trajectory of atoms through simulation time: x(t)
– Properties of interest: energy, density, diffusion,
etc.

It should be noted that the focus of this summary is on
fixed-charge biomolecular/organic force fields, as these
are used predominantly in the simulation of humic sub-
stances. However, several other types of force fields exist,
as documented extensively in the literature; in particular,
significant progress has been recently made on polarizable
models [59].

The standard form of a force field is

V = Vbonded + Vnonbonded (1)

where Vbonded defines the (intramolecular) interactions
between atoms covalently bonded to each other, and
Vnonbonded defines the intermolecular interactions. In par-
ticular, Vbonded typically contains simple harmonic terms,
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whereby for instance a covalent bond is modeled with a
potential representing a mechanical spring:

V (l) = 1
2

k(l − leq)
2 (2)

with k the rigidity constant, l the actual bond length, and
leq the equilibrium bond length. Additional terms are used
to control the angles within groups of three consecutively
bonded atoms, as well as torsions involving groups of four
bonded atoms. Rigidity constants and equilibrium val-
ues are typically optimized to reproduce vibrational and
conformational properties from experiments or ab initio
quantum mechanics calculations. The nonbonded com-
ponents of a force field normally describe van der Waals
and electrostatic interactions. The van der Waals inter-
action between each pair of atoms a distance r apart is
modeled with the Lennard-Jones potential:

V (r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

(3)

with σ defining the collision distance and ε the attrac-
tive energy. Atoms interacting through the Lennard-
Jones potential can be thought of as spheres which repel
each other at short range (a feature that mimics over-
lap between electron clouds) and attract each other at
long range (corresponding to attractive dispersion forces).
The Lennard-Jones parameters σ and ε are normally
optimized to reproduce thermodynamic data from exper-
iment, including liquid densities and enthalpies of vapor-
ization. Electrostatic forces between each pair of atoms i, j
located a distance r apart are modeled with the Coulomb
potential:

V (r) = QiQj

4πε0r
(4)

with Qi and Qj the corresponding charges and ε0 the
permittivity of free space. In general, charges are assigned
empirically to reproduce experimental observables
such as known multipole moments or thermodynamic
properties.

The second stage in Box 1 represents the main com-
putational loop of a molecular dynamics simulation. The
first part of the loop involves computing the force on each
atom, which is obtained from the gradient of the potential
V . In the second part of the loop, the forces are used to
move each atom forward in time. This is done by solving
numerically Newton’s equations of motion. For example,
considering one of the most widely used algorithms [60],
given the force f(t) and velocity v(t) at the current time

t, each atom is moved one timestep, from position x(t) at
time t to position x(t + �t) at time t + �t, according to

x(t + �t) = x(t) + �t [ v(t) + �t f(t)/2m] (5)

where m is the atom’s mass. Each iteration of this sec-
ond stage advances the system in time by a typically small
timestep (�t = 10−15 s), and thus complete simulations
normally require up to 106 − 109 iterations.

The third stage in Box 1 refers to the output data gen-
erated by the simulation. In particular, a trajectory is
obtained consisting of consecutive snapshots of the sys-
tem taken at regular time intervals during the simulation.
The output trajectory is typically analyzed using statis-
tical mechanics to obtain various thermodynamical and
dynamical properties of interest, such as energy terms,
average and local densities, diffusion and viscosity coeffi-
cients, mechanical parameters, and electrical potentials.

Simulations of humic substances
In this section, a number of representative molecular
dynamics investigations of HS reported in the literature
are reviewed. The studies considered are organized into
different subsections corresponding to different types of
systems investigated. It should be noted that in the liter-
ature HS are sometimes referred to as ‘NOM,’ ‘SOM,’ or
‘DOM’ [61,62]. These acronyms stand for natural organic
matter (NOM), soil organic matter (SOM), and dissolved
organic matter (DOM). Specifically, NOM refers to a com-
plex mixture of organic material that is found in water,
soils, and sediments [63,64]. SOM refers to all carbon-
containing substances in soils [65]. DOM is defined as the
portion of NOM which passes through a filter of 0.45-
μm pore size [66]. For all of these three categories, HS
represent a major constituent [7,65].

Modeling HS and their fundamental properties
Computational molecular models for HS began to appear
in the 1990s. One of the first and most significant con-
tributions involved the development of the TNB model
(from Temple-Northeastern-Birmingham) [67-70]. The
TNB model was aimed at representing a typical, ‘average’
HS molecule, with a chemical composition determined
on the basis of analytical measurements. Specifically, the
TNB model comprises three carboxylic groups, three car-
bonyl groups, two phenolic groups, two amine groups,
and four other R-OH alcohol groups, for a total chem-
ical formula of C38H39O16N2 and a molecular weight
of 753 g mol−1. The molecular structure of the TNB
molecule is reported in Figure 2. Earlier simulations of the
TNB molecule were performed in vacuo, meaning that no
other substance (such as water) was included in the sys-
tem. In particular, these calculations aimed at finding the
most realistic (optimized) geometrical arrangements by
minimizing the potential energy of the system [67,70].
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Figure 2 The TNB model. Molecular structure of the
Temple-Northeastern-Birmingham (TNB) model for HS. Reprinted
with permission from Sein et al. [70]. Copyright 1999 American
Chemical Society.

Alvarez-Puebla and Garrido [71] studied the effect of
pH on the aggregation of the TNB humic model [68-70].
By simulating the aggregation process, it was found that
the molecular size increased with increased pH values due
to intramolecular electrostatic repulsion, while the size
of the aggregates decreased with increased pH because
of increased repulsive intermolecular interactions [71].
Alvarez-Puebla et al. [72] subsequently developed a mod-
ified version of the TNB model [68-70] aimed at better
representing a set of experimental data on HS composi-
tion. A series of simulations were conducted to investigate
HS aggregation as a function of the model’s ionic states,
both in vacuo and in aqueous solution [72].

Leenheer et al. [73] developed a model of HS and used
it for the interpretation of experimental data on metal-
HS association. Kubicki and Apitz [69] later used the
Leenheer model to predict equilibrium structures through
classical molecular mechanics and quantum calculations
and to test the effect of the specific computational
methodology on the structures obtained. The Leenheer
model [73] was also adopted by Porquet et al. [74] to
investigate hydrogen bonding and clustering of neutral HS
molecules in water.

While HS molecular models are typically constructed
by assembling atoms manually into the desired composi-
tions and geometries, an interesting alternative approach
was developed by Diallo et al. [75], who proposed a
series of structural models for soil HS by processing
an extensive set of experimental data through an auto-
mated algorithm, implemented into specifically designed
computational software. The model molecules obtained
were relatively small, with an average molecular weight
of ≈1,000 g mol−1. As opposed to the more traditional
approaches, the method of Diallo et al. [75] has the advan-
tage that only the appropriate isomers are selected when

multiple structures can be deduced from the same set of
analytical data.

The specific role of water in its interactions with HS
was investigated by Aquino et al. [76,77]. In this work, HS
were represented by simple hydrocarbon chains contain-
ing hydrophilic (carboxyl) groups. The MD simulations
showed that distant hydrophilic groups can be cross-
linked by water molecular bridges [76,77].

In general, the HS models reviewed so far include
molecules characterized by relatively low numbers of
atoms, on the order of 100, yielding molecular weights
of ≈1,000 g mol−1. However, the development of molec-
ular models comprising substantially larger numbers of
atoms has also been reported. In particular, significant
work in this context has been carried out by Schulten and
coworkers [61,65,78], who proposed model HS molecules
comprising over 1,000 atoms and corresponding molecu-
lar weights of up to and over 10,000 g mol−1.

Specifically, Schulten and Schnitzer [78] designed a
SOM molecule by hydrogen bonding a humic struc-
ture to a hexapeptide and a trisaccharide, obtaining a
compound with molecular formula C342H388O124N12 and
corresponding molecular weight of 6,651 g mol−1. Based
on the SOM model, Schulten [61] subsequently pro-
posed a model for DOM and investigated complexes
with xenobiotic substances. In general, xenobiotics are
substances such as pollutants or pesticides, which are
found in the environment yet are not naturally expected
to be present. Schulten [61] performed molecular sim-
ulations of systems including DOM, water, and the
xenobiotic pentachlorophenol (a pesticide), atrazine (a
herbicide), and DDT (an insecticide). Geometry optimiza-
tion calculations were performed to analyze energetics
and hydrogen bonds. It was found that van der Waals
forces and hydrogen bonds were the main contributors
to the temporary retention of xenobiotic substances in
DOM [61].

By considering the compounds observed in pyroly-
sis and other experimental studies of organic matter,
Schulten further refined a molecular model for DOM [65].
In particular, a prototypical DOM molecule was obtained
taking into account the most frequently occurring molec-
ular building blocks, as well as an averaged elemental
composition. Various organic functional groups found in
HS were employed, including aromatic, alkyl, carboxyl,
ketone, quinone, phenol, alcohol, ether, amine, amide, and
heterocyclic N and S functional groups. The resulting
molecule contained 1,262 atoms, with molecular formula
C487H492O306N15S2 and corresponding molecular weight
of 11,515 g mol−1; a 3D representation of the Schulten
DOM molecule [65] is reported in Figure 3. In the simu-
lations, 35 water molecules were also added to the surface
of the DOM molecule. Energy minimization calculations
were carried out to study the contributions from van der
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Figure 3 The Schulten DOM molecule. Snapshot of a 3D representation of the Schulten DOM model [65]. Color codes for atom types are as
follows: carbon (cyan), hydrogen (white), oxygen (pink), nitrogen (blue), and sulfur (yellow). Reprinted with permission from Schulten [65]. Copyright
1999 Elsevier.

Waals and electrostatic terms, as well as to characterize
hydrogen bonds [65].

Sutton et al. [62] refined the Schulten DOM mole-
cule, obtaining a compound with molecular formula
C447H421O272N15S2 and corresponding molecular weight
of 10,419 g mol−1. This model was then simulated under
conditions of increased hydration, typical of natural soil
and water environments. In particular, the DOM molecule
was surrounded by water molecules corresponding to
a hydration layer of ≈5 Å thickness. The systems were
shown to reproduce experimental physical and chemical
properties of HS for several characteristic environmen-
tal conditions of soil. Specifically, results were obtained
for density, hydrogen bonds, radius of gyration, and the
Hildebrand solubility parameter [62].

For the HS molecular models considered in this review,
Table 1 reports the corresponding chemical formula and
molecular weight.

HS in complex with soil minerals
In general, HS are stabilized by their association with soil
minerals, which prevent microbial attack and resulting
rapid decomposition of HS [79,80]. As a consequence, HS
adsorption to minerals regulates the presence of carbon in
soils [79]. An improved understanding of organo-mineral
interactions is thus highly desirable, as it could lead to
new strategies for soil carbon retention and sequestration
through stabilization of HS.

A pioneering MD simulation study in this area was
carried out by Teppen et al. [81], who investigated
trichloroethylene (C2HCl3), taken as a basic compound
representative of organic material, adsorbed on clay min-
eral surfaces (kaolinite and pyrophyllite) in the presence of
water. By considering different levels of hydration, it was
found that water can outcompete C2HCl3 for adsorption
at the clay surface [81].

Shevchenko et al. [82] simulated organo-mineral aggre-
gates in water using a NOM model based on an oxidized
lignin-carbohydrate complex. MD simulations were con-
ducted using the simulated annealing approach, whereby
structural optimization is obtained by cooling-heating
cycles which allow energy barriers to be overcome, even-
tually leading to optimized geometries.

To investigate further the nature of HS-mineral
interactions, Sutton and Sposito [79] simulated com-
plexes comprising the Schulten DOM molecule [65]
and Ca-montmorillonite, a clay mineral of the smec-
tite group. In particular, two DOM-Ca-montmorillonite
systems were constructed. The first system included a
C447H421O272N15S2 protonated DOM molecule, a 32-
unit Ca-montmorillonite clay layer, 12 Ca2+ ions, and
543 interlayer water molecules. The second system com-
prised a C447H345O272N15S 76−

2 DOM polyanion, a 32-
unit Ca-montmorillonite clay layer, 50 Ca2+ ions, and 852
interlayer water molecules. In both systems, the DOM
molecule was inserted into one of the clay interlayers.
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Table 1 Properties of model HS molecules

Model molecule Chemical formula Molecular weight (g mol−1) References

TNB C38H39O16N2 753 [67-70]

Schulten SOM C342H388O124N12 6,651 [61]

Schulten DOM C487H492O306N15S2 11,515 [65]

Sutton DOM C447H421O272N15S2 10,419 [62]

DOM polyanion C447H345O272N15S 76−
2 10,343 [79]

Brown humic acid (C38H39O16N2)13 9,789 [86]

From their simulations, Sutton and Sposito [79] were
able to ascribe the stabilization of organo-mineral systems
to significant direct hydrophobic and hydrogen bond-
ing interactions between organic and mineral groups.
A simulation snapshot from this work is reported in
Figure 4.

Petridis et al. [83] modeled an Al2O3 mineral surface
in contact with the organic compounds stearic acid and
glucose. The aim of this work was to study the mecha-
nism by which glucose accumulates in a layer between
Al2O3 and stearic acid, as observed experimentally. The
simulations conducted revealed that glucose deposits onto
Al2O3 driven by a lower entropic penalty with respect to
stearic acid [83].

HS and metal ions
Understanding the association between HS and metal ions
is a crucially important issue, as this process controls the
speciation, solubility, and toxicity of trace metals [84,85].

Sutton et al. [62] simulated systems including the Schul-
ten DOM molecule [65], water, and the Na+ and Ca2+
ions. It was found that Ca2+ ions associate more strongly
than Na+ with the carboxylate groups of the humic
molecule. Moreover, Ca2+ was shown to promote better
hydration of the humic molecule [62].

Alvarez-Puebla et al. [86] studied the interaction
between brown humic acid (BHA) with Cu2+, Ni2+,
and Co2+ ions. BHAs are the most polar and soluble
components of HS, because of their high content in

Figure 4 DOM-montmorillonite system. Snapshot from a simulation of protonated DOM-montmorillonite system. Water molecules are
represented with cylinders, whereas DOM and clay are represented as balls and sticks. Color codes for atom types are as follows: carbon (gray),
hydrogen (white), oxygen (red), nitrogen (blue), sulfur (yellow), and calcium ions (brown). Reprinted with permission from Sutton and Sposito [79].
Copyright 2006 Elsevier.
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carboxylic and phenolic acidic groups. The BHA structure
was developed based on the TNB model [68-70]. Specif-
ically, a BHA polymer was obtained by concatenating
13 TNB monomer units. Due to the high computational
cost of simulating such a large molecule, Alvarez-Puebla
et al. [86] did not include solvating water, although its
effect was approximated by introducing frictional forces
through a Langevin scheme [87]. The BHA was observed
to display higher affinity for Cu2+ (most reactive), fol-
lowed by Co2+, and then by Ni2+ (most inert). This
behavior was attributed to electrostatic retention, a mech-
anism consistent with both experimental and simulation
results [86].

Xu et al. [88] performed molecular dynamics simula-
tions of complexes involving NOM and metal ions. In
particular, they investigated the interactions between Cs+
and Cl− with NOM in water. For NOM, they adopted the
TNB model [68-70]. Several simulations were performed

for a range of metal ion concentrations. A representa-
tive simulation snapshot is reported in Figure 5. The data
obtained showed that Cs+ associates with NOM through
rapid exchange with the bulk solution, whereas Cl− does
not significantly associate with NOM; these results were
found to be consistent with nuclear magnetic resonance
experiments [88].

The study by Xu et al. [88] was extended by Kalinichev
and Kirkpatrick [89] and by Iskrenova-Tchoukova
et al. [90], who considered the Na+, Mg2+, and Ca2+
ions. It was found that metal-NOM binding is primarily
driven by electrostatic attraction between the positive
ions and the negatively charged carboxylate groups of
the NOM molecule (whereas phenolic groups were not
significant binding sites). Moreover, the propensity for
metal-NOM aggregate formation was found to be corre-
lated with the charge to radius ratio and the size of the
ions [89].

Figure 5 Hydrated TNB molecule interacting with ions. Simulation snapshot from a system comprising the TNB molecule [70] in 0.3 M Cs+
aqueous solution. Color codes for atom types are as follows: carbon (brown), hydrogen (gray), oxygen (red), nitrogen (blue), Cs+ (green). Water
molecules are shown in transparent representation. Reprinted with permission from Xu et al. [88]. Copyright 2006 Elsevier.
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A rather original methodological study was performed
by Kalinichev et al. [91], who considered the effects
of different models and system sizes on the simulation
results for a NOM-Ca2+ association process. In particu-
lar, they tested combinations of the force fields CVFF [92],
CHARMM [93], and AMBER [94], with the water mod-
els SPC [95] and TIP3P [96]. The properties consid-
ered, which included radial distribution functions and
potentials of mean force, were found to be fairly robust
with respect to the different model parameters used [91].

HS and contaminants
Antimicrobials make up a large proportion of the con-
taminants detected in the environment [97-99]. The
occurrence of antimicrobials in soil and water is caused
by their widespread use in agriculture and medicine
[100-103], as well as their presence in a wide range of
healthcare and household goods [104-106]. The detri-
mental effects of antimicrobials include the disruption
of key microbial processes in soil, toxicity to organisms,
and the development of microbial resistance [107-110].
These problems are significantly mitigated when antimi-
crobials are adsorbed in organic matter, such as HS. To
gain insights into the adsorption process, Aristilde and
Sposito [111] carried out molecular dynamics simulations
of the binding of the antimicrobial ciprofloxacin by HS.
Ciprofloxacin is a frequently prescribed antibiotic com-
monly found in hospital wastewaters [112]. Regarding
the HS component, Aristilde and Sposito [111] used the
Schulten DOM model [62,65]. The simulations showed
that the ciprofloxacin-HS association involved the disrup-
tion of original hydrogen bonds within the DOM molecule
and their replacement with intermolecular hydrogen
bonds with ciprofloxacin [111].

Another class of ubiquitous contaminants is repre-
sented by polycyclic aromatic hydrocarbons (PAHs),
which are highly toxic compounds that form as a result
of the combustion of organic fuels such as coal, oil,
and natural gas. It has been shown in a number of
studies that organic matter can regulate the transport,
fate, degradation, and bioavailability of PAHs [113-118].
Saparpakorn et al. [119] investigated by simulation the
binding of PAHs to different HS models; in particu-
lar, they simulated Schulten’s SOM molecule [78] and
implemented models for earlier molecules proposed by
Buffle et al. [120] and by Stevenson [1]. The simulations
performed aimed at quantifying the role of intermolecu-
lar interactions, as well as docking energies and binding
modes [119].

Schulten et al. [121] modeled complexes of HS and
the xenobiotic diethyl phtalate (DEP), with the objective
of investigating the sorption process. Interactions were
studied between a single HS molecule and an increas-
ing number of DEP molecules, from 1 to 30. From their

simulations, Schulten et al. [121] were able to quantify
the sorption process in terms of the different contribu-
tions from electrostatic, van der Waals, and hydrogen
bonding interactions. In particular, sorption inside free-
volume pockets of HS was observed to take place between
a single HS molecule and up to seven DEP molecules,
whereas additional DEP molecules were adsorbed at the
HS surface [121].

Another category of contaminants of increasing rele-
vance is represented by carbon nanoparticles. The general
use of carbon nanomaterials in industry is rapidly grow-
ing, raising health and environmental concerns which
demand quantitative assessment. Wang et al. [122] used
molecular simulations to investigate the interactions
between DOM and fullerene (C60), a typical carbon
nanoparticle. Fullerene plays a role in a wide range of
industrial applications and is known to display some
degree of toxicity [123-126]. Wang et al. [122] selected
seven small organic molecules, representative of main
DOM building blocks, and characterized their interaction
with C60 in terms of adsorption energy and water solubil-
ity; it was found that the presence of DOM can stabilize
C60 [122]. Further insights into DOM-C60 systems were
obtained by Sun et al. [127], who considered a range of
low molecular weight organic acids as key components of
DOM. By estimating adsorption energies, it was observed
that aromatic acids interact more strongly with C60 than
aliphatic acids [127]. Wu et al. [128] simulated an aggre-
gate comprising ten C60 molecules associated with a small
HS molecule. In particular, the HS model was constructed
by connecting a benzoic group to a hydrocarbon tail. It
was found that hydrophobic and π-π interactions were
the two main mechanisms of association [128]; a simula-
tion snapshot from this work is reported in Figure 6.

To obtain insights into the sorption of volatile organic
compounds into HS, Shih et al. [129] studied the inter-
action between the TNB humic acid model [68-70] and
toluene (representative volatile organic compound) in
vacuo. Specifically, the diffusion coefficient of toluene
was characterized as a function of temperature from 300
to 400 K. The results obtained are in qualitative agree-
ment with experiment, in that diffusivities were observed
to increase with temperature. However, the experimental
data were slightly overestimated [129].

HS and water filtration
Satisfying the world’s population need for clean and drink-
ing water is one of the greatest challenges of our time.
To address this challenge, it is paramount to develop
and optimize industrial processes aimed at filtering and
desalinating sea water and municipal waste water. The
currently most promising filtration technology relies on
membranes operating in reverse osmosis plants. In these
processes, the presence of HS is a fundamental aspect
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Figure 6 Interaction between a small HS molecule and fullerene. Snapshot from a MD simulation by Wu et al. [128]. Color codes for atom types
are as follows: carbon (gray), hydrogen (white), oxygen (red). Reprinted with permission from Wu et al. [128]. Copyright 2006 Elsevier.

to consider. In fact, a key problem that greatly limits the
efficiency of current filtration membranes is fouling, a
phenomenon whereby particles deposit and accumulate
on the membrane surface ultimately causing a reduction
in the filtering performance. A major category of fouling
agents is represented by organic substances, particularly
HS [130-135].

A number of MD studies have been devoted to dif-
ferent aspects of the fouling process. Ahn et al. [136]
investigated the effects of metal ions on the adsorption
of a NOM model [68] onto the surface of polyethersul-
fone membranes. It was found that divalent ions (Mg2+
and Ca2+) induce fouling by promoting aggregation of
NOM molecules [136]. However, the interactions between
NOM and the filtration membrane were not explicitly
investigated.

The fouling of a polyamide membrane was investigated
by Hughes and Gale [137,138]. Specifically, they consid-
ered glucose and phenol molecules as representative HS
fouling agents, as both glucose and phenol are common
building blocks of HS. Membrane-foulant interactions
were quantified in terms of free energies and hydrogen
bonding. It was found that both foulants bind strongly
to the membrane surface, with phenol sometimes diffus-
ing through the membrane pores [137,138]. A simulation
snapshot from this study is reported in Figure 7; a phenol
molecule can be seen penetrating the polymeric mem-
brane.

Myat et al. [139] investigated possible specific mech-
anisms of interaction between representative organic
foulants. Specifically, they focused on the biopolymer
bovine serum albumin (BSA) [140] and the polysaccha-
ride sodium alginate, taken to be representative of high

molecular weight compounds typically found in surface
and waste waters. Moreover, they considered the TNB
humic acid model [68-70] as representative of HS. No
water was explicitly included. Simulations of a BSA-HS
complex revealed the presence of various electrostatic
and hydrophobic interactions, as well as hydrogen bond-
ing. On the other hand, analysis of an alginate-HS com-
plex highlighted the presence of exclusively ion-mediated
interactions. The simulation results were found to be
consistent with corresponding experimental data [139].

Figure 7 Interaction between phenol and polymeric membrane.
Snapshot from a MD simulation by Hughes and Gale [138]. A phenol
molecule (colored yellow) permeates into a polyamide membrane
(colored purple). Reprinted with permission from Hughes and
Gale [138]. Copyright 2012 Royal Society of Chemistry.
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Conclusions
Achievements, issues, and future prospects
Over the past 20 years, a growing number of com-
puter models have been developed and applied to
study many important structures and processes involving
humic substances (HS), including their basic molecular
properties [62,65,67-70,75], their aggregation behavior
[71,72,74,76,77], their interaction with various substances
including minerals [79,81-83,86], ions [62,85,86,88-91],
and contaminants [111,119,121,122,128,129,141,142], and
their fouling capability in relation to membrane-based
water filtration technologies [136,138,139].

These investigations yielded considerable molecular-
level insights into the structure and function of HS,
as summarized in the previous sections of this review.
However, a few issues should be considered. In par-
ticular, it is important to bear in mind that none of
the HS models developed so far correspond to real
humic molecules. Rather, the models represent puta-
tive compounds obtained by assembling molecular build-
ing blocks which are known experimentally to be
most prevalent in HS. Furthermore, several investiga-
tions, especially among the earliest simulations reported,
focused on energy minimization calculations, with the
aim of finding the most energetically favorable (opti-
mized) conformations for a molecule or molecular aggre-
gate [61,65,67,70,121,142,143]. However, it should be
noted that energy optimization methods yield proper-
ties corresponding to a temperature of 0 K, as only the
potential energy is considered, while there is no kinetic
energy in the system. When temperature and thermal
motion are important, as is typically the case for sys-
tems of organic and biological molecules, full MD sim-
ulations, while computationally more demanding than
optimizations, are to be preferred. A final issue to high-
light involves the fact that many simulation studies of HS
did not include hydrating water (in vacuo assumption)
[67,69-71,73,78,82,121,128,129,139,144-150]. As already
pointed out elsewhere [72,143,149,151], HS are hydrated
in reality, and water interactions with HS are likely to
influence important properties. For example, the large
molecular dipole of water is expected to interact strongly
with HS polar groups, and hydrogen bonds between water
and HS are expected to be prevalent. The presence of
appropriate amounts of water in MD simulations of HS is
therefore recommended.

In terms of future prospects, there is an expectation that
specific HS structures will be accurately identified from
experiment, opening up opportunities for MD simulations
of realistic HS compounds. As a result, simulated systems
will likely become larger and more complex, and hence
also more computationally expensive. While this could
represent an obstacle, there are reasons to be optimistic.
From a hardware perspective, the continuous increase in

computational power will keep extending the attainable
simulation times and sizes. Moreover, ongoing research
in multiscale methods [152-157] promises to substantially
improve simulation efficiency in the near future. Self-
assembly simulations of large numbers of different HS
molecules might soon become a reality, opening up the
opportunity to study and quantify atomic-level properties
within realistic HS supramolecular structures.

More generally, the study of HS in the foreseeable future
will have great relevance for several areas of key global
importance. Owing to the role of HS in controlling CO2
in the ecosystem, advances in HS research could lead
to new solutions for carbon capture and storage, thus
contributing to address the urgent global challenge of
increasingly rapid climate change [5]. Moreover, a better
understanding of HS can be instrumental in increasing
food production to satisfy the needs of a growing popula-
tion [158], as well as in optimizing filtration technologies
to obtain clean and drinking water [159]. While exper-
imental research will always be essential, in the years
to come, molecular simulations of HS are expected to
become increasingly useful, particularly for providing a
more detailed understanding of experimental observa-
tions, for guiding the design of new experiments, and for
predicting properties and phenomena at the molecular
scale.
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