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Abstract With the rapid outstripping of limited health

care resources by the demands on hospital care, it is of

critical importance to find more effective and efficient

methods of managing care. Our research addresses the

problem of emergency department (ED) crowding by

building classification models using various types of

pre-admission information to help predict the hospital

admission of individual patients. We have developed a

framework of hospital admission prediction and proposed

two novel approaches that capture semantic information in

chief complaints to enhance prediction. Our experiments

on an ED data set demonstrate that our proposed models

outperformed several benchmark methods for admission

prediction. These models can potentially be used as deci-

sion support tools at hospitals to improve ED throughput

rate and enhance patient care.

Keywords Hospital admission prediction � Emergency

department � Chief complaint � Classification model �
Feature vector � Kernel function

1 Introduction

There is an increasing utilization of emergency department

(ED) facilities leading to demand/capacity mismatch.

Overcrowding is a growing problem for EDs of many

hospitals (Derlet and Richards 2000; Dickinson 1989). It is

estimated that one-third of EDs throughout the country

experience crowding on a daily basis (Derlet et al. 2001;

Wilper et al. 2008). While the number of ED visits is on the

rise, patients are facing increasingly long waiting times and

ED visit length (Pitts et al. 2008). According to a study of

patient visits to 364 US EDs (Hanley and McNeil 1982), in

the median ED, a total of 76 % of patients were admitted

within 6 h. Only 25 % of EDs admitted more than 90 % of

their patients within 4 h and 48 % of EDs admitted more

than 90 % of their patients within 6 h. There is a wealth of

evidence to indicate the effect of ED crowding and long

waiting time on clinical and operational outcomes such

as increased ambulance diversions and clinical errors

(Bernstein et al. 2009; Miró et al. 1999; Pines et al. 2006;

Richardson 2006; Sprivulis et al. 2006). In the United

States, patients admitted to the intensive care unit (ICU)

suffer higher mortality rates when their ED boarding times

exceed 6 h after the decision to admit (Chalfin et al. 2007).

Initially, the problem of ED crowding was thought to be

a result of inappropriate use of the ED by patients

(increases in numbers of patients arriving) or poor pro-

cesses within the ED itself. However, according to the

studies by the US General Accounting Office and others

(Accounting 2003; Steele and Kiss 2008), delays in moving

patients who need inpatient care from the ED to inpatient

rooms is a more significant contributor to crowding,

because the beds these admitted patients occupy in the ED

are not available for treating patients still waiting in the

waiting room. These delays are typically a result of rooms
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not ready (not cleared or allocated, or even still occupied)

and staff not available (whether doctors or nurses).

At present, decisions to admit patients from the ED

often are made some hours after arrival because of the need

for data gathering, whether by the physician directly or via

laboratory and radiological studies. Frequently, the process

to prepare the bed and staff is not started until a formal

admission decision is made. Streamlining the process to

move patients from the ED to an inpatient bed would be

enhanced if it were possible to predict those patients who

need hospital admission at the moment they arrive in the

ED, such as when the first clinical contact occurs at triage

and thus beds could be ready when needed. Commonly,

data about the patient including a chief complaint, vital

signs, past medical history, age, and gender are obtained in

triage. This study seeks to use easily available information

from triage to predict the need for admission to inpatient

care. Such a predictive model can be used at EDs to sup-

port admission decisions and start physical preparation of

beds and staff allocation in advance. Our ultimate goal is to

mitigate ED crowding and improve the quality of patient

care.

The remainder of the paper is organized as follows. In

Sect. 2, we review related literature in emergency medicine

and data mining. In Sect. 3, we introduce a framework of

admission prediction using pre-admission information,

with specific focus on two semantic-enhanced prediction

methods. We evaluate the two proposed methods on a real

ED data set in Sect. 4. Finally, we conclude our paper and

discuss some limitations and future work in Sect. 5.

2 Literature review

In recent years, a number of data-mining techniques have

been applied to health care and prediction models may be

the most common applications (Almansoori et al. 2012;

Chan et al. 2008). Our study is focused on models for

predicting hospital admission. We review related work

from two aspects: their use of data and analytical tech-

niques. In addition, we survey previous work on capturing

semantic information for data-mining tasks.

2.1 ED data for admission prediction

Prior to the thorough collection of data that occurs once a

patient is seen (history, physical examinations, and tests),

patient information collected at EDs is limited: demo-

graphic characteristics, mode of arrival, reasons for seeking

care, brief medical history, and possibly some basic clinical

measures (vital signs) are recorded (Chan et al. 2008).

These initially gathered data are used to determine whether

the patient could be allowed to wait or must immediately

see a doctor. Previous studies predicting admission to

inpatient status have used data that might not be typically

available at the time of arrival at the ED, such as accom-

modation type, mobility, lab tests, and even early diagnoses

(Chan et al. 2008; Cristianini and Shawe-Taylor 2000;

Leegon et al. 2005). These data are only available after the

patient has had a sufficient workup, which will usually

mean that several hours have passed. Additionally, these

data are not always available in ED data sets. Furthermore,

pre-admission data can be collected with different methods

at EDs and presented in different formats. For instance,

gender can be regarded as a Boolean variable and acuity as

an ordinal variable, while others such as age and blood

pressure can be regarded as continuous variables. Most of

these variables are single valued, i.e., each data point (a

patient) has only one value for a variable. However, some

other variables can be multi-valued. Chief complaints

(CCs) are an example.

Chief complaints (CCs) are often considered in prior

work to be critical information for decision support at EDs

(Chan et al. 2008; Cristianini and Shawe-Taylor 2000;

Leegon et al. 2005). A CC is a concise statement describing

the patient’s reason for seeking medical care, such as

symptoms, conditions, and mechanisms of injury. At an ED

visit, CCs may be generated by nurses, physicians, and

sometimes patients themselves. Examples of CC terms are:

fv (fever), nvd (nausea, vomiting, and diarrhea), and sob

(shortness of breath). Without a standard lexicon, word

variations such as synonyms and acronyms, misspelling,

and the institution-specific use of expressions are quite

common in CCs, which was often regarded as a major

challenge for the use of free-text CCs (Haas et al. 2008; Lu

et al. 2008). Moreover, multiple CCs can be assigned to an

individual patient to describe his/her different symptoms or

conditions, which presents a critical challenge for the

representation and modeling of data.

Therefore, raw CCs collected at EDs often require pre-

processing to make them useful for further analysis. To

deal with misspellings and word variations in CCs, various

spell-checking algorithms have been adopted in previous

studies (Shapiro 2004). However, most spell-checking

algorithms are based on either the edit distance or phonetic

similarity; they offer limited value for CC processing.

Meanwhile, to deal with major sources of variations in

CCs, such as abbreviations, acronyms, and idiosyncratic

expressions, it is often required that raw complaints should

be converted into standardized terminologies based on a

certain coding scheme; such a scheme provides a common

standard for CC classification, retrieval, and analysis. Most

health care research and systems adopt a general-purpose

coding scheme, e.g., the International Classification of

Diseases (ICD-9) (ICD-9 2012), the Systematized

Nomenclature of Medicine Clinical Terms (SNOMED-CT)
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(Herbert and Hawking 2005), the Unified Medical Lan-

guage System (UMLS) (Bodenreider 2004), or a domain-

specific coding scheme [e.g., reason for visit classification

(RVC)]. While general-purpose coding schemes often

contain tens of thousands or even millions of terminologies

for the standardization of clinical data across multiple sites,

domain-specific coding schemes deal with a particular

medical domain and therefore contain a smaller number of

terminologies (Schneider et al. 1979). Each coding scheme

has a hierarchy containing rich semantic relationships

among entries, which make them a valuable resource for

medical information processing (Achour et al. 2001). Once

raw free-text CCs are mapped to standard terms in one of

these coding schemes, semantic information embedded in

the scheme can be captured to enhance subsequent analysis

and prediction. Several studies have proposed approaches

to pre-processing and mapping free-text CCs into stan-

dardized complaint categories (Chapman et al. 2005;

Thompson et al. 2006; Travers and Haas 2004). However,

there is not yet a universally accepted approach for CC

standardization. Even after the raw CCs are standardized,

defining the method to represent and capture the semantic

information of coded CCs for decision support remains a

challenge.

2.2 Existing techniques for admission prediction

Each type of information collected at EDs tells us certain

characteristics about the patients. However, not all of these

variables are necessarily contributing factors for predicting

hospital admissions. In order to identify good features/

variables for prediction, there are two types of feature

selection methods: individual feature ranking and feature

subset section (Li et al. 2007). Individual feature ranking is

a univariate method that evaluates the relevance of each

variable separately based on a certain criteria, such as

Pearson correlation coefficient, information gain, and so

on. Specifically, in order to identify good features for

admission prediction, Pearson’s Chi-squared test can be

used for categorical variables and Student’s t test for

continuous variables (Chan et al. 2008). Individual feature

ranking methods evaluate variables based on their indi-

vidual predictive power separately without taking into

account their interaction effects. On the other hand, feature

subset selection methods evaluate the group performance

of multiple variables together in a model for prediction.

Many multivariate analytical and machine learning

techniques have been used to build prediction models for

hospital admission and other similar clinical decisions.

Among them, logistic regression is one of the most com-

monly used techniques because it can take both continuous

and categorical variables as independent variables and

predict the likelihood of occurrence of an event (Lyon et al.

2007). A logistic regression model can also show the rel-

evance of each input variable to the prediction target. In

addition, several other supervised learning techniques from

the data-mining field have also been applied to clinical

decision support, as well. For example, Steele et al. (2006)

adopted a decision-tree approach called Classification and

Regression Tree (CART) (Lewis and Street 2000) to derive

criteria for trauma triage using various field measures (e.g.,

penetrating mechanism, systolic blood pressure, pulse rate,

etc.). Bayesian networks, which can model probabilistic

dependencies between input and output variables, have also

been used to build prediction models for hospital triage and

admission decision support (Leegon et al. 2006; Sadeghi

et al. 2006). In addition, advanced computational tech-

niques such as artificial neural network (ANN) can derive

complex models for admission prediction with high sen-

sitivity and specificity (Leegon et al. 2006). However,

ANN is often criticized for its poor model interpretability.

Despite their underlying computational mechanisms,

these prediction techniques often require the representation

of each data point, or patient in our case, as a feature

vector, where each feature corresponds to an input pre-

dictor variable. Categorical variables that can take multiple

values, such as chief complaints, can be represented in the

model by defining one dummy variable for each value

(e.g., each coded CC). However, the hundreds of possible

CCs would lead to a feature space of high dimensionality

and a very sparse data matrix. Feature selection is often

necessary to reduce the dimensionality of feature space for

machine learning (Hulse et al. 2012; Li et al. 2007). This

problem can be partially solved by treating CCs as one

variable and only considering the major complaint for each

patient (Leegon et al. 2005). However, this representation

is limited because such a nominal CC cannot be multi-

valued, i.e., each instance can give only one value for CC.

If a patient is assigned with multiple complaints, which is

very common, using such a nominal variable cannot suf-

ficiently capture all the complaints but the major complaint

alone. Furthermore, the semantic information of the com-

plaints, such as symptoms and systems, cannot be captured

by any of these data representations.

2.3 Semantic-enhanced methods for prediction

A feature vector representation is simple and is widely

applied in many statistical and machine learning approa-

ches. However, such a representation is not effective in

capturing the semantic relatedness between variables.

Several measures have been developed to determine the

semantic relatedness or similarity between concepts, and

they have been shown to enhance the performance of a

number of natural language processing (NLP) tasks. For

example, semantic similarity or relatedness measures can

Models to support timely admission prediction at EDs 163

123



be used for word sense disambiguation (WSD) based on the

idea that a word should be used in the sense that is most

similar to or related to the sense of words that surround it

(Leacock and Chodorow 1998; McCarthy et al. 2004;

Patwardhan et al. 2003; Rada et al. 1989). Furthermore,

through WSD based on word semantic similarity, Ureña-

López et al. (2001) showed an improved performance for

text categorization (TC). Most of these semantic related-

ness measures are defined as a distance between words in

certain ontology, which represents knowledge of a set of

concepts and their relationships in a domain. WordNet, a

freely available lexical database, is such ontology of

*150,000 general concepts as English words. WordNet

not only contains definitions of concepts, but also groups

them into sets of synonyms called synsets, which compose

a hierarchical structure of the various semantic relation-

ships between these synsets (Miller 1990). In addition,

other knowledge sources such as Wikipedia also provide a

graphical structure among more than three million con-

cepts. Given the high-dimensional space of Wikipedia,

Gabrilovich and Markovitch (2007) proposed a method to

compute word semantic relatedness by representing the

meaning of text as a weighted vector of Wikipedia

concepts.

General-purpose knowledge resources such as WordNet

and Wikipedia lack domain-specific coverage, which

makes them less effective for domain-specific tasks. Given

the availability of various ontologies and resources in the

biomedical domain, semantic similarity measures can be

adapted and applied to medically related tasks. One of the

earliest efforts to measure the similarity between biomed-

ical terms was based on Medical Subject Headings (MeSH)

as a semantic hierarchy (Miró et al. 1999). Lord et al.

(2003) adapted WordNet-based measures to compute the

relatedness between terms based on Gene Ontology (GO),

a specialized ontology of the molecular functions and

biological processes of gene products. The hierarchy of

UMLS has also been used as an ontology to compute the

path-lengths and ‘‘semantic distance’’ between medical

concepts (Bodenreider 2004; Wilbur and Yang 1996).

More recently, Pedersen et al. (2007) derived path-based

and content-based measures of semantic similarity and

relatedness for biomedical concepts based on the

SNOMED-CT ontology and medical corpora. Studies have

shown that capturing the semantic information in bio-

medical terms can improve the performance of tasks such

as information retrieval (IR) and classification in the bio-

medical domain (Li et al. 2007). In our research, we

investigated how semantic information of medical terms

can be incorporated into a prediction model for enhanced

performance.

3 Semantic-enhanced models for admission prediction

In this research, we propose a framework for predicting

hospital admission using pre-admission information, as

shown in Fig. 1. (1) CC standardization: As one type of

patient information collected at EDs, raw chief complaints

need to be converted to standard codes based on a certain

CC coding scheme. (2) Data transformation: We propose

two novel approaches, semantic-enhanced feature vector

and semantic kernel function, to transform data into a

meaningful format for subsequent model building. (3)

Learning and validation: At this step, a model is trained

using the processed data for admission prediction and

assessed based on standard evaluation metrics. In this

section, we will describe each module of the framework in

detail.

3.1 Chief complaint standardization

Of the various types of patient information collected,

demographic and initial clinical data are well structured

and can be easily represented as variables. However, each

patient is often assigned several raw (free-text) CCs at EDs,

and these CCs are not standardized terms. For example, a

symptom of ‘‘abdominal pain’’ may be described as

‘‘abdominal pain,’’ ‘‘abdomen pain,’’ ‘‘pain in abdomen,’’

‘‘ap,’’ etc. Including all of these raw CCs as variables may

CC Standardization 

Learning & Validation Data Transformation 

Two Approaches 
- Semantic-enhanced 
feature vector 
- Semantic kernel 
function 

Machine Learning: 
- SVM 

Coded CCs 

Validation: 
- Metrics: accuracy, 
sensitivity, specificity 
- Baselines methods 

CC Coding Scheme

Demographic 

Raw CCs

Clinical 

Patient Information 
Fig. 1 A framework of hospital

admission prediction using pre-

admission information
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lead to a high-dimensional feature space with an excessive

amount of noise. Therefore, we first need to standardize the

raw CCs by dealing with problems, such as synonyms,

acronyms, misspelling, etc.

In our proposed framework, a CC coding scheme is a

critical component in that it is used for both CC stan-

dardization and data transformation. The CC standardiza-

tion process maps each free-text CC to a standard coded

CC defined in the coding scheme. In the data transforma-

tion process, our algorithms will leverage the structure of

CC coding scheme and capture the semantic information of

CCs. It is worth noting that any existing CC coding scheme

should be applicable in this framework. In our study, we

chose to use the Coded Chief Complaints for Emergency

Department Systems (CCC-EDS), a comprehensive and

granular scheme of chief complaints describing the reason

for an ED visit (Thompson et al. 2006). The CCC-EDS was

developed based on the study of various ED CC literature and

coding schemes, including RVC and ICD-9. The CCC coding

engine is a computerized text-parsing algorithm for auto-

matically reading and classifying English language free-text

chief complaints into one of these coded chief complaints. The

CC algorithm is based on a mapping table that links over 8,000

distinct CC entries into 238 clinically actionable CCs, each

corresponding to a specific ICD-9 code.

In CCC-EDS each coded CC Ci is described by its name

(wi), type (ti), system (si), and acuity rating (ri). There are 8

different type groupings and 14 different system groupings

in the scheme (see Table 1). The CCC acuity rating is a

five level index for triage assessment based on the Emer-

gency Severity Index (ESI 2012; Wuerz et al. 2000), with a

rating of 1 being the most acute and of 5 being the least

acute. For example, the chief complaint ‘‘chest pain’’ has

type = ‘‘illness–symptom,’’ system = ‘‘cardiovascular

and immune System,’’ acuity rating = ‘‘2,’’ and ICD-9

code = 786.50. This coding scheme allows for the sub-

sequent rollup of chief complaint volume statistics into

manageable reporting groups.

3.2 Data transformation

CC standardization allows us to significantly reduce the

thousands of complaints to a much more manageable size.

However, we still need to find a meaningful way of rep-

resenting coded CCs, demographic information, and other

clinical measurements for each patient to train a predictive

model. The data transformation module takes different

types of patient information as input and transforms it in a

certain format that can be input into a machine learning

algorithm. Machine learning techniques can be categorized

into feature methods and kernel methods. In feature

methods, each data object is represented as a feature vector

X = (x1, x2,…, xp) in a p-dimensional space. Features need

to be predefined to describe certain characteristics or

properties of data object. However, if data objects have

some complex structure such as a hierarchy or network,

features cannot be easily defined to capture the structural

information. Kernel methods are an effective alternative to

feature methods (Cristianini and Shawe-Taylor 2000).

They define a kernel function between a pair of data

objects. Formally, a kernel function is a mapping of K:

X 9 X ? [0, ?) from an input space X to a similarity

score K(x,y) = /(x)�/(y) =
P

i/i(x)/i(y), where /i(x) is a

function that maps X to a higher dimensional space. A

kernel function is required to be symmetric and positive

semidefinite. Such a kernel function makes it possible to

compute the similarity between objects in their original rep-

resentation without enumerating all of the features. By

applying a kernel function to all instance pairs in a training set

of size n, we can get an n 9 n kernel matrix, which can be fed

into a kernel machine, e.g., a support vector machine (SVM)

(Cristianini and Shawe-Taylor 2000), to train a model for

prediction. The performances of kernel methods are mainly

determined by the selection and design of the kernel functions.

Another advantage of kernel methods is that they transform

heterogeneous data representations into kernel matrices of the

same format, which enables the integration of different

information (Lanckriet et al. 2004). Kernel-based methods

have been frequently used in various machine learning areas,

such as pattern recognition (Chapman et al. 2005), data mining

(Zhou and Wang 2005), and text mining (Li et al. 2008).

In order to support timely admission prediction at EDs,

we propose two ‘‘semantic-enhanced’’ models: a semantic

feature (SF) method and a semantic kernel (SK) method.

We call them ‘‘semantic-enhanced’’ models because they

Table 1 Chief complaint types and systems in CCC-EDS

CC types CC systems

Injury–trauma General

Symptom Eyes

Disease or condition Ears, nose, mouth, throat,

and face

Medical device, procedure,

or surgery

Cardiovascular

Exposure Respiratory

Treatment Gastrointestinal

Bites or stings Genitourinary

Other administrative Musculoskeletal

Skin, hair, nails, and breast

Neurological and spine

Psychiatric and behavioral

Endocrine

Hematologic–lymphatic

Allergic–immunologic
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both capture the semantic relatedness between complaints

by considering their attributes, such as type, system, and

acuity rating as defined in the CC coding scheme.

3.2.1 Semantic feature method

First, we consider a feature method and try to represent

each patient visit as a feature vector. Each variable of the

demographic and clinical information often takes a single

value and can be easily represented as a feature. Since

multiple chief complaints can be assigned to each patient,

each coded CC can be regarded as an individual feature

which can take a Boolean value to indicate whether this CC

is assigned to the patient or not. However, such a repre-

sentation often generates a very sparse data matrix. A

previous admission decision for a patient based on certain

CCs will not be helpful for the prediction for another

patient unless they share common coded CCs. A better

method should consider the semantic relatedness between

CCs in modeling training and predicting the likelihood of

admission. Therefore, we leverage the predictive power of

a CC by considering not only its own occurrence, but also

the occurrence of related CCs.

Based on this idea, we adapt the standard feature vector

representation with enhanced semantics by a smoothing

approach. In the CC coding scheme, if two CCs share the

same type or system, they are likely to be related. For

example, two CCs, ‘‘chest pain’’ and ‘‘cardiorespiratory

arrest,’’ share the same type ‘‘symptom’’ and the same

system ‘‘cardiovascular.’’ Obviously, these two complaints

are more similar to each other than two other complaints

that do not belong to the same type or system. To capture

such semantic similarity between CCs, we adjust the value

of a CC feature based on those of its related CCs. Specif-

ically, a CC affects the value of a related CC of the same

type by an impact factor of a (0 \ a\ 1), and a CC affects

the value of a related CC of the same system by an impact

factor of b (0 \ b\ 1). The five-level acuity rating of a

coded CC is also considered when we adjust the value of a

CC feature. Finally, since each patient record may contain

multiple complaints, an individual’s overall CC value

should be defined as a weighted sum of effects of all chief

complaints assigned to the patient. If a CC Ck (k is the

index of Ck) does occur in a patient record (Ck = 1), no

adjustment is performed. Only if a CC Ck does not occur in

a patient record (Ck = 0), the value of this feature Ck
0 was

adjusted by the following function (1):

Ck0 ¼
PN

i¼1
aTði;kÞCi

ri
þ
PN

j¼1
bSðj;kÞCj

rj
PN

i¼1 Tði; kÞ þ
PN

j¼1 Sðj; kÞ
ð1Þ

where N is the total number of coded CCs, T(i, k) is a

match function to test if Ci and Ck belong to the same type,

S(j, k) is a match function to test if Cj and Ck belongs to the

same system, and ri (rj) is the acuity rating of Ci (Cj).

Let us consider a patient with a chief complaint ‘‘chest

pain.’’ Given the basic feature vector representation, each

CC can only take a Boolean value. Thus, except for the

feature ‘‘chest pain’’ equal to 1, all remaining CCs will be

0, no matter they share a common system or type with

‘‘chest pain’’ or not. By contrast, after applying the

smoothing function, each CC that share a common system

or type with ‘‘chest pain’’ will take a value greater than 0.

For instance, ‘‘cardiorespiratory arrest’’ has the same type

‘‘symptom’’ and the same system ‘‘cardiovascular’’ as

‘‘chest pain.’’ According to formula (1), its value will not

be 0 but a value between 0 and 1. We call the new feature

vector with adjusted values a semantic-enhanced feature

vector. As such, we embed the semantic meanings of CCs

into the feature vector representation, which can potentially

improve the performance of prediction model.

3.2.2 Semantic kernel method

In addition to the semantic-enhanced feature method, we

also develop an alternative, a kernel method for data rep-

resentation and model building. Unlike feature methods,

kernel methods can capture complex structural information

in data points without explicitly elaborating all of the

features in a vector. Furthermore, with kernel methods,

data in different formats can be easily combined together

for model learning. In this study, in order to integrate ED

patient data (e.g., demographic, clinical, and CCs) in dif-

ferent formats for admission prediction, we define a new

semantic kernel function K(P1, P2) that computes the

similarity between two patients, P1 and P2. This kernel

function K is a composite kernel combining two sub-kernel

functions KL and KC:

KðP1;P2Þ ¼ kKLðP1;P2Þ þ ð1� kÞKCðP1;P2Þ ð2Þ

where sub-kernel KL deals with features other than CCs, KC

deals with CC features, and 0 \ k\ 1 represents the

weight of the KL sub-kernel. KL and KC transform the

training data, including different types of variables, into

the same format of kernel matrices.

Specifically, the sub-kernel KL handles variables regarding

patients’ demographic information and clinical information.

Since these variables can be represented in the same format,

we choose not to further separate them into different sub-

kernel functions for the sake of simplicity. Different existing

kernel functions can be used for KL. For example, we can

adopt a simple linear kernel function that sums up the simi-

larity score of each feature for the two patients.

KLðP1;P2Þ ¼ P1 � P2 ¼
X

u

MuðP1;P2Þ ð3Þ
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where Mu(P1, P2) is a match function for feature u:

MuðP1;P2Þ ¼
1 if u1 ¼ u2

0 otherwise

�

ð4Þ

For sub-kernel KC, we define a series of functions to

compute the similarity between complaints and between

patients. Since each CC Ci contains sub-features such as

name wi, type ti, system si, and acuity rating ri, we define

the similarity function between two CCs as follows:

SðCi;CjÞ ¼
X

v

SvðCi;CjÞ ð5Þ

where Sv(Ci, Cj) gives the similarity between Ci and Cj for

the sub-feature v.

Specifically, each complaint’s name wi is phrase of

multiple terms (e.g., ‘‘chest pain’’). We treat each name wi

as a ‘‘bag of words’’ and thus use the cosine similarity

function to compute the similarity between two complaint

names wi and wj:

SwðCi;CjÞ ¼
wi � wj

wik k wj

�
�
�
� ð6Þ

For instance, the cosine similarity between two

complaint names, ‘‘chest pain’’ and ‘‘abdominal pain,’’

will be 1ffiffiffiffiffiffiffiffiffi
12þ12
p ffiffiffiffiffiffiffiffiffi

12þ12
p ¼ 1ffiffi

2
p ffiffi

2
p ¼ 1

2
.

For the CC’s type (t), system (s), and acuity rating (r),

the similarity can be computed by a simple match function:

SvðCi;CjÞ ¼ MvðCi;CjÞ ¼
1 if vi ¼ vj

0 otherwise

�

ð7Þ

where v [ {t, s, r}.

Each patient record may contain multiple complaints.

The similarity between two sets of complaints,

{C11;C12; . . .;C1n1
} for a patient P1 and {C21;C22; . . .;

C2n2
} for a patient P2, can be computed by integrating the

similarity scores of each individual complaint pairs:

KCðP1;P2Þ ¼
1

n1n2

Xn1

i¼1

Xn2

j¼1

SðC1i;C2jÞ ð8Þ

where n1 and n2 are the numbers of occurring CCs for

patients P1 and P2, respectively.

Finally, the kernel matrix needs to be normalized as

follows:

K � ðP1;P2Þ ¼
KðP1;P2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KðP1;P1ÞKðP2;P2Þ

p ð9Þ

3.3 Learning and evaluation

Once the data transformation phase was done, original

patient records from the training data set were either rep-

resented as semantic-enhanced feature vectors or trans-

formed into a semantic kernel matrix of similarity scores.

Machine learning algorithms such as an SVM (Cristianini

and Shawe-Taylor 2000) can take either the feature vectors

or the kernel matrix as input for model training. The trained

classification models were then validated using a separate

test set based on standard evaluation metrics, such as

accuracy, sensitivity, and specificity, compared to other

benchmark methods. A model that has been validated by

these methods can then be used for predicting the admis-

sion of future patients based on their pre-admission

information.

4 Experiments

In this study, we conducted experiments on a real ED data

set to examine our proposed approaches for hospital

admission prediction.

4.1 Data description

The test bed we used in our experiments was an ED data set

from Hahnemann Hospital, an academic hospital and level

I trauma center serving an inner city population in Phila-

delphia, Pennsylvania. The ED at Hahnemann serves over

34,000 patients per year and is an approved residency

training site for emergency medicine. Triage may occur at

bedside or outside the main ED. This study was approved

by the Drexel University Institutional Review Board under

the expedited classification. A convenience sample of tri-

age data for 2,794 patient visits to the ED of Hahnemann in

January 2008 was obtained by extracting data from hand-

written charts.

In this data set, information about each patient includes:

age, gender, date and time of arrival, an acuity rating

assigned by triage nurse (4 levels: emergent, urgent, stable,

and fast track), chief complaints (a transcription and pos-

sible summarization by the nurse based on a patient’s

presenting statements), and, most importantly, decision of

admission made by the hospital (whether the patient was

admitted for inpatient care). Based on suggestions by a

doctor affiliated with the hospital, we preprocessed the raw

data to construct variables to address suspected differences

in ED and hospital resources as well as patient arrival

patterns. Elderly patients are more likely to have a greater

number of pre-existing medical problems. For example,

age is an independent risk factor for the development of

cardiovascular disease and age is associated with greater

physiological derangement. It often takes more work and

time to help get an elderly patient back to a basic level of

health and thus an admission is more likely to be needed.

Hence, age was dichotomized to elderly and non-elderly

dividing at 60 years of age. Furthermore, due to limited

hospital resources, patient arrival patterns in date and time
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may also affect the capacity of hospitals in accommodating

new patients who need inpatient care. Date information

was used to generate a Boolean variable ‘‘weekend.’’ Time

information was used to generate a Boolean variable

‘‘night_shift’’ (i.e., a night shift is between 2300 and

0659 hours). Because chief complaints are available as free

text and may vary due to misspelling, abbreviations, and

synonyms, the chief complaint information from paper

charts was preprocessed by CCC-EDS and mapped to a

coded CC (Thompson et al. 2006). Admission information

was obtained from charts and was regardless of destination

or how long the patient may have stayed in the ED. Among

these 2,794 patients, 781 (28 %) were admitted to the

hospital. To retain the prior probabilities of the two classes,

we did not do any balancing on the data in model training.

Table 2 summarizes all variables/features in our data set.

We conducted Chi-square tests to assess the relevance to

the target variable ‘‘admitted’’ for each feature, except for

the CCs. Results showed that all the features, i.e., gender,

age, shift in day, night shift, and acuity, were statistically

significant at level a = 0.05. In particular, it is not a sur-

prise that acuity rating assigned by nurses seems to be a

good predictor for hospital admission. Figure 2 shows the

admission rates for the four acuity ratings. In our data set,

68 % of patients with acuity rating as ‘‘emergent’’ were

eventually admitted at hospital, whereas only 2 % of

patients with acuity rating as ‘‘fast track’’ were admitted.

However, it is unreliable to use acuity rating as the only

criterion to predict admission. Specifically, if we predict all

‘‘emergent’’ patients to be admitted and all others not, the

overall accuracy is only 73.16 %. Therefore, we will need

to include other features to build a more accurate predictive

model for hospital admission.

4.2 Experimental design

In our experiments, we used the decisions of admission

made by the hospital as the gold standard for labeling our

data points for training and testing. It is worth emphasizing

that our research is not aimed at rectifying hospitals’

decisions on patient’s admission. Instead, our main goal is

to help hospitals predict patient admissions more timely, so

that necessary operational preparations can start earlier and

patients’ waiting times can be reduced. Therefore, we

assume all decisions for admission made by the hospital

were correct and train our prediction models based on

them.

In our experiments, we evaluated the performance of our

proposed models by comparing them with several classi-

fication techniques. Our selected benchmark methods

included logistic regression (LR), Naı̈ve Bayes classifier

(NB), decision trees (DT), and SVMs. Logistic regression

is a general linear model that can predict the likelihood of

the occurrence of an event by fitting data to a logistic

curve. This statistical technique is widely used in the

medical and social sciences for prediction. Naı̈ve Bayes

classifier is a simple probabilistic classifier based on Bayes

theorem (Han and Kamber 2006). A decision tree is a

decision support tool that builds a tree-like graph model of

decisions (Han and Kamber 2006). An SVM classifier

constructs a separated hyperplane in an n-dimensional

space to maximize the margin between the two data groups

(Cristianini and Shawe-Taylor 2000). These classifiers

were selected because they are commonly used in many

applications and show good performances. To demonstrate

the predictive power of our semantic-enhanced models, for

the benchmark methods, we represented each patient visit

as feature vector in which a CC was simply a dichotomous

variable indicating its occurrence, with no CC semantics

Table 2 A summary of variables in our ED data set

Variables Values Counts

Age (C60) False 2,321

True 473

Gender Male 1,450

Female 1,344

Weekend False 2,157

True 637

Night_shift False 2,119

True 457

Acuity Emergent 85

Urgent 1,377

Stable 1,005

Fast track 325

CCs (top 5) Chest pain 271

Abdominal pain 270

Injury–trauma NOS 217

Vomiting 215

Cough 208

Admission False 2,013

True 781

Fig. 2 Admission rate for patients with different acuity ratings
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captured. We did not use one single nominal variable to

represent the primary chief complaint as categorical vari-

ables because we do not want to lose the information about

patients with more than one CC. For both of our proposed

approaches, semantic-enhanced feature vector and seman-

tic kernel, we used an SVM to train a classification model.

We refer to these two models as SF-SVM an SK-SVM,

respectively. For the semantic-enhanced feature method,

we assumed that type and system were equally important

for representing semantics and tuned the two parameters, a
and b, from 0.1 to 0.9 for the best prediction accuracy. Our

tuning results showed that SF-SVM achieved its best per-

formance when a = b = 0.5. For the semantic kernel

method, we tuned the parameter k from 0.1 to 0.9 and

found that SK-SVM achieved its best accuracy when

k = 0.5. In our analysis, we only compare the experimental

results under the best parameter settings.

In order to evaluate our proposed admission predic-

tion models, we chose to use two data-mining packages,

WEKA (http://www.cs.waikato.ac.nz/ml/weka/) and LibSVM

(http://www.csie.ntu.edu.tw/*cjlin/libsvm/) (Hsu et al.

2010). We did not use other commercial software because

these two are available for free and, more importantly, they

both are used in many data-mining studies for evaluation.

WEKA is a Java-based machine learning package that

supports a number of standard data-mining tasks. Instead of

using the LibSVM module available in the latest WEKA

package, we used LibSVM which was chosen for SVM

classifiers because it supports customized kernels and

parameter selection. For the two classifiers, SVM and SF-

SVM, a radial basis function (RBF) kernel was chosen for

model learning because this kernel function can handle

potentially non-linear relationships between features and

target values. In our experiments, we used tenfold cross-

validation to evaluate the performance of each classifica-

tion model because the cross-validation procedure can

prevent the problem of overfitting (Hanley and McNeil

1982). Standard evaluation metrics, such as accuracy,

sensitivity, specificity, and receiver operating characteristic

(ROC) curves, were used to access the correctness of

classification.

4.3 Experimental results

The performances of different admission prediction models

are summarized in Table 3. The best performances for the

three evaluation metrics are highlighted in bold font. Our

two proposed approaches, SF-SVM and SK-SVM, out-

performed other benchmark methods in terms of accuracy

and sensitivity. Specifically, the semantic-enhanced fea-

ture-based approach (SF-SVM) achieved the highest

accuracy and sensitivity, 81.21 and 68.03 %, but the lowest

specificity, 81.40 %. The semantic kernel approach (SK-

SVM) achieved the second highest accuracy and sensitiv-

ity, 79.32 and 63.21 %, and also the highest specificity,

85.93 %. We have conducted paired t tests to compare the

performance of different methods. Our tests showed that

the accuracy and sensitivity of SF-SVM and the specificity

of SK-SVM are statistically higher than those by the

baseline methods (p value \0.05).

We also analyzed the performance of our admission

decision-making methods by comparing ROC curves. In

Fig. 3, each ROC curve plots the true positive rate (i.e.,

sensitivity) versus the false positive rate (i.e., 1 - speci-

ficity) at different decision thresholds. The closer the ROC

curve is to the upper left corner, the higher the overall

accuracy. The area under the ROC curve (AUC) of each

classification is another measure to evaluate the perfor-

mance of the model. As shown in Fig. 3, the ROC curves

of SK-SVM and SF-SVM show better overall prediction

performance compared to benchmark methods. Table 3

summarizes the area under curve (AUC) values for all

prediction models. Of all models, SK-SVM and SF-SVM

achieved the highest AUC, 0.8808 and 0.8388, respec-

tively. Statistical tests showed that SK-SVM significantly

outperformed other benchmark methods, except for SF-

SVM (p value \0.05) (Hanley and McNeil 1982).

Our experimental results show that by incorporating the

semantic information of CCs, we improved the perfor-

mance of hospital admission prediction compared to

benchmark methods. The semantic-enhanced feature

method SF-SVM tended to categorize more patients as

requiring admission and therefore gave higher sensitivity

(more true positives), but only at the cost of a lower

specificity (more false positives). In contrast, although the

semantic kernel method SK-SVM did not perform as well

as SF-SVM in terms of accuracy and sensitivity, it was able

to improve the prediction performance without increasing

false positives and therefore is less likely to cause the waste

of hospital resources. The primary success of any admis-

sion prediction model involves its ability to maximize

accuracy. The application of prediction model to the

Table 3 Performance of admission prediction models

Models Accuracy

(%)

Sensitivity

(%)

Specificity

(%)

AUC

LR (logistic

regression)

77.34 62.25 82.24 0.8337

NB (Naı̈ve Bayes) 77.38 62.34 83.03 0.8088

DT (decision trees) 76.21 60.01 81.93 0.8040

SVM (support

vector machine)

78.21 63.12 82.86 0.8234

SF-SVM 81.21 68.03 81.40 0.8388

SK-SVM 79.32 63.21 85.93 0.8808
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admission process should also consider its effects on costs

of and quality of care, which we plan to address in our

future research.

For our baseline classification models such as logistic

regression and decision trees, the predictive powers of

variables can be easily interpreted. In these models, not

surprisingly, the acuity rating assigned by the nurse at EDs

always showed to be a good predictor variable for admis-

sion prediction. However, without capturing the semantics

of CCs, the sparse data with hundreds of CC features did

not seem to contribute a lot to the prediction. Furthermore,

we examined the prediction outcomes and found several

examples in which semantic similarity between CC terms

rectified the false predictions of models based on basic

feature vector representation. For example, a female patient

who arrived at night shift was assigned a chief complaint

‘‘sores’’ and acuity rating = ‘‘fast track.’’ The benchmark

methods incorrectly predicted her to be admitted to the

hospital. By contrast, both of our proposed approaches, SF-

SVM and SK-SVM, predicted correctly by recognizing that

this patient’s CC, ‘‘sores’’, shares the same system, ‘‘skin,

hair, nails, and breast,’’ and the same type, ‘‘symptom,’’

with another CC, ‘‘rash,’’ which was assigned to another

similar patient in the training set who was not admitted to

the hospital. For another, a patient with a CC ‘‘chest pain’’

and acuity rating = ‘‘emergent,’’ the benchmark methods

categorized her as ‘‘not admitted.’’ By contrast, SF-SVM

and SK-SVM captured the semantic similarity between

‘‘chest pain’’ and another CC, ‘‘syncope,’’ which shares the

same system, ‘‘cardiovascular,’’ and the same type,

‘‘symptom.’’ Furthermore, because another emergent

patient with ‘‘syncope’’ in the training set was admitted to

the hospital, our two models rectified the false negative

prediction and correctly categorized the emergent patient

with ‘‘chest pain’’ to be admitted as well. These examples

showed that, by capturing semantic similarity between

complaints, our proposed models can predict admissions

more accurately.

5 Conclusions and future directions

Facing the conflicts between the limited hospital resources

and the increasing demands of patients, hospitals need to

plan and manage care in more effective and efficient ways.

To solve the problem of ED crowding, in this study, we

proposed two novel classification models that can capture

semantic information about chief complaints for hospital

admission prediction. We evaluated our prediction models

on a 1-month data set collected from an emergency

department by comparing them with several benchmark

methods. Our experiments showed an encouraging

improvement of prediction performance for the proposed

approaches in terms of accuracy, sensitivity, and specific-

ity. Our prediction models can potentially be used as

decision support tools at hospitals to improve the ED

throughput rate and enhance the quality of patient care.

Our study has the following limitations: triage data does

not include nurse or physician gestalt about the need for

admission. Additionally, there is no information available

about the likelihood that a patient might need admission

because of an inability to care for oneself at home (social

factors). The CCA has been shown to describe case mix but

not been validated as a tool that can provide operational

power. It may cause important details describing the

patient’s condition to be lost. This was a small sample of

ED data and it will be important to test these techniques on

larger more comprehensive data sets, so that more variables

can be used. It was not possible to identify periodic pat-

terns (such as time of month or seasonal factors). The

collecting of more factors does come at a cost of increased

labor to extract these elements until such information is

automatically and regularly collected with electronic data

systems.

In our future work, we plan to refine our model design

by incorporating other knowledge recourses such as the

ICD-9-CM coding scheme and validate our models on

larger data sets. The value of our admission model could be

enhanced with the inclusion of cost and revenue functions.

We will also consider both the costs of false positives and

negatives and the opportunity costs of being unable to care

for additional patients in the ED if admitted patients cannot

be moved quickly. The costs associated with altered quality

of care due to ED crowding must also be considered

(Bernstein et al. 2009; Pines et al. 2006). Furthermore, we

plan to develop a system that can operationalize our
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proposed models to support better hospital operations

management and patient care.
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