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Abstract: Due to the importance of data dependence test for exploiting parallelisms in loop, an approach that

mtegrates existing test methods and makes good use of their advantages is proposed m this study. The

proposed methoed, called weighting characteristic test, will be suitable for all cases due to considering their
characteristics of input data. By computing the weight of characteristics for loop input data, the proposed

approach chooses the appropriate test and applies it to detect data dependences on loops. The weighting
characteristic test gives exact solution in most of input cases and less overhead than other integrated methods
from our experimental results. Thus, the proposed method 1s more applicable than existed data dependence tests

for exploiting loop parallelism indeed.
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INTRODUCTION

For several decades, the commercial supercomputers
and mim-supercomputers have been a major class of
highly parallel and widely applicable machines. The
parallel compilers play the most important role of
exploiting the parallelization in programs, especially, for
the array usage in loops. Because the data dependence
testing 18 one of the cruses of parallel compiler,
developing an effective data dependence test on loops is
the first step for parallel compiler.

There have been extensive studies of decision
methods for array data dependences (Zima and Chapman,
1990; 7Zi et al., 1990; Kong et al., 1991 ; Banerjee, 1998,
Wolfe and Tseng, 1992; Pugh, 1992; Goff et af., 1991,
Maydan et al., 1991, Shih ef al., 1994; Ahamed et al,
2001; Mineo et al, 2003, 2004; Chang et al., 2004,
Van Engelen et al, 2004, Bertrand et al, 2005;
Baude et al, 2007, Damevski et al, 2007). Data
dependence testing problems are equivalent to deciding
if two references to the same array within nested loops
may reference to the same element of array. In general, to
solve such a problem would be considered as integer
programming and the time complexity of the best nteger
programming algorithm is O(n°™), where n is the number
of loop indices. Clearly, the cost of the algorithms is too
expensive to be applied, so more feasible, faster and less
exact algorithms might be desirable in some problems.

In order to mvestigate an efficient and precise
technique, we can consider how to solve well an integer
solution to a set of linear equalities and inequalities since
data dependence testing problem can be thought as an
mteger programming resolution problem. The problem 1s
reduced to be an m-dimensional referenced array with
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linear mdices and to decide whether a system of m linear
equations, each of the form, as shown in Eq. 1, has a
simultaneous integer solution which satisfies of the form,
as shown in Eq. 2, where n is the depths of loops and
each I, 1s either a loop index variable or some other code
variable. Tf T, is a loop index variable, it is bounded by M,
the lower bound of indices and N,, the upper bound of
indices. Usually, M, and N, can be decided statically,
however, they still are inknown in some cases.

al, +tal,+.. . +al,=a; (1)

M<I <N, 1<ksn, (2)

For data dependence testing algorithms, a new
approach, characteristic weighting test is proposed in this
research. Because existing algorithms have their different
flavors of input cases, they are integrated by extracting
characteristics of input cases and choose an appropriate
with taking efficiency and precision 1to
consideration. In our approach, a library of testing
algorithms is constructed and some attributes are selected
by testing algorithms to assign weight. A weighting
characteristic system, the kemel of our approach is
constructed m this study. The kernel assigns a proper
weight to each aftribute and selects an appropriate
algorithm by computing the total weight of attributes
according to loop behavior.

In past decades, a great deal of researches
(Wolfe and Tseng, 1992; Pugh, 1992) had worked on the
trade-off between the precision on data-dependence
testing and its overhead. The key pomts of our approach
are concentrated on both efficiency and precision. There
are some researches (Goff et al., 1991, Maydan et al.,

one
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1991) to prove that once very simple subscripts are
filtered away and tested inexpensively, the expensive test
is required for only a few remaining subscripts. To detect
simple data dependences by simple tests and complex
data dependence by expensive tests, a weighting
characteristic approach is proposed and chooses a simple
algorithm, such as the Banerjee test or the GCD test, for
data dependence testing, when simple subscripts appear
and left complex ones to the algorithms of expensive cost,
such as the Power test.

BACKGROUND

To exploit parallelism in program, parallelizing
compilers need a precise dependence test to allow the
most freedom in applying restructuring transformation
(Wolfe and Tseng, 1992) which 1s necessary for iterations
of loops in programs to distribute them on different
processors and concurrently execute to achieve speedup
of whole execution time.

Definition of data dependence testing: The process of
computing all the data dependences in a program 1s called
data dependence analysis. If statement S, and statement
S, access the same location of array in loops, we say that
data dependence exists between S, and S, In general,
three types of data dependences are often mentioned by
Hwang (1986):

Flow dependence: As shown in Fig. 1, the location of
array A in statement S, is written by the sum of x and vy,
then read by statement 3, later.

Anti-dependence: As shown in Fig. 2, Statement S, reads
array A which will be written by the sum of w and z later.

Qutput dependence: As shown in Fig. 3, the sum of x and
v 18 written to array A which will be written by the sum of
w and z later.

The methods of data dependence testing are used to
determine whether there exist dependences between two
subscripted references to the same array in a nested loop.
Suppose we wish to test where there exists a dependence
from 5, to 3, in loop model of Fig. 4, loop nest of n levels,
represented by n integer indices i, 1y, ... 1,.

Let i and P be vectors of n integer indices i, 15, ..., i,
written the range of the upper and lower bounds of the n
loops and f, g be the mapping function of vectors « and
B. There is a dependence from S, to S, if and only if there
exist ¢ and P, such that « 1s lexicographically less than or
equal to [ and the following system of dependence Eq. 3
1s satisfied:

1

>

fi (@) =g (B) i, 1<i<m 3)
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Dol=1N
Sy Al =x+y;
S, z=A[l];
Enddo

Fig. 1: Example of flow dependence

DoI=1,N
S v =A[l]+x;
S, Alll=w+z
Enddo

Fig. 2: Example of anti-dependence

DolI=1,N
S Alll=x+y;
S, Alll=w+z
Enddo

Fig. 3: Example of output dependence

Doi, =1L, 1]
Doi,=1,1,
Doy =L, U,
Sy NG TGS PRIy U S (P F )
3, =Alg (1.1 1) Bl L))
Enddo
Enddo
Enddo

Fig. 4: A model of n levels nested loop

Otherwise the two references are mdependent. The
dependence equation, as shown in Eq. 1, is linear
of the Thus,

dependence testing is equivalent to the problem of

eXPressions loop index varables.
solving simultaneous equations, which is a NP-complete
problem. Exact tests are dependence tests that will detect

if only if they exist.

Data dependence testing methods: Data dependence
tests are classified into three classes, single dimension,
multi-dimension and mtegrated methods in this research.
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Single dimension

Banerjee test: The Banerjee test (Zima and Chapman,
1990, Banerjee et al., 1979) considers a limit only if 1t 1s
statically determinable to have a constant value.

GCD test: The GCD test (Zima and Chapman, 1990;
Banerjee et al., 1979) 1s based on the theorem of greatest
common divisor, where 1t determines whether the ged of
coefficients, (a, a,, ..., a,), of Eq. 1 is a divisor of a;. The
GCD test ignores limits entirely and determines whether
the equation has a solution for any integer values at all of
the variables.

T test: The T test (Kong ef al., 1991) is a refinement of a
combination of the GCD and Banerjee tests. It checks for
the existence of integer solution and takes hmits mto
consideration. Furthermore, it can produce a definite
solution when the GCD and Banerjee tests produce only
tentative ones.

Multi-dimension

Extended GCD test: The extended GCD test (Zima and
Chapman, 1990), the 1deas behind Euclid’s GCD algorithm
being extended to find a general integer solution for a set
of linear equations with integer coefficients, was
investigated by Knuth (1981). The Extended GCD test,
reviewed and used in the Power test for data
dependence testing by Wolfe and Tseng (1992),
was described as a matrix form of the algorithm
(Banerjee, 1998).

Power test: The power test (Wolfe and Tseng, 1992) 1s
a combination of the Extended GCD test and the
Fourier-Motzkin methods to eliminate variables mn a
system of inequalities. The name of Power test is derived
from the power and precision of the method, but in fact
that it takes exponential time (in the number of loop index
variables) in the worst case.

Omega test: The omega test (Pugh, 1992) determines
whether there is an integer solution to an arbitrary set of
linear ecualities and inequalities, referred to as a problem.

Lambda test: The lambda test (Z1 et al, 1990) 1s an
efficient and accurate data dependence analysis. Tt
extends the numerical methods to allow all dimensions to
be tested concurrently.

Integrated methods

Practical test: The practical test (Goff et al., 1991) is
based on classifying pairs of subscripted variable
references and constrained to some kind of input cases.
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MHIL test: The MHI test (Maydan et al., 1991) is a
cascade method, that is to say, the extended GCD test is
applied first, 1f 1t fails, another testing methods are applied
next.

K test: The K (knowledge-based) (Shih et al., 1994,
Yang et al., 1997) test 1s an approach, which chooses an
appropriate test by knowledge-based techmques and then
applies the resulting test to detect data dependence,
solving as normal tests.

Weighting methods: The weighting methods are based
on evaluation of weight to draw a conclusion, an
appropriate suggestion for the answer. The kernel of
weilghting system consists of an evaluation function of
weight and the defimtion weight of characteristics, which
dominate the whole process of the evaluation. The
feasibility of this method is that when we find a new factor
which deeply affects the result of evaluation and then the
new factor 13 jomed into the evaluation function of weight
without obvious change in the weighting system. The
evaluation function of weight can be defined as shown in
Eq. 4

E w=TImf, * Attr w, +Imf, * Attr w,
+ ... +Imf, * Attr w, (4
where, E_w 1s the total weight after evaluating, Imf; is the
important factor of the attribute and the Attr w, is the
weight of the attribute, chosen by evaluation. The E w,
computed by evaluation function, 1s the basis of possible
solution or for the suggestion of deciding the next step.
For example, the approach has some similar aspects in
common with IBM Deep Blue (Hamilton and Garber, 1997,
Newborn, 1997).

PROPOSED WEIGHTING
CHARACTERISTIC TEST

For each existing test algorithms, they have their own
favors on some characteristics and that is the motivation
to propose an integrated testing algorithm which makes
good use of their advantages m different cases. Although
the exactness of the result of test algorithm is more
important, the overhead is also an important factor to an
integrated test algorithm; otherwise, it would loose its
meamng, making good use of test algorithm’s advantages.

Framework of the weighting characteristic method: The
proposed weighting characteristic method is constructed
by two major parts: one 1s the evaluation function of
weighting characteristics and the other is the test
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Input
linear

Fig. 5: Framework of the weighting characteristic test

algonithm library. First, the input, a set of equations, 1s fed
into the evaluation function of weight Then, the
evaluation unit evaluates the total weight by computing
the evaluation equation, constructed by some important
attributes which deeply affect the result of evaluation and
draws a conclusion, an appropriate test being applied to
data dependence testing. Finally, the resulting test is
applied and the answer generated. To simplify the
complexity of weight-based system n our approach, a
simple framework is proposed for being applied for data
dependence testing and a weighting characteristic system
is chosen to reduce overhead and to increase feasibility
of extension since it has effective evaluation ability that
has a good evidence of application in IBM Deep Blue.
The framework of the weighting characteristic test 13 as
shown in Fig. 5.

The kernel of weighting characteristic system 1s
based on the evaluation function of weight, constructed
by simple equations. In order to construct the evaluation
function, important characteristics, existing in each test
algorithm, must be extracted and the most affective
characteristics are chosen for constructing the evaluation
function. The mput equations always mclude necessary
information, which is applied to the evaluation phase. By
using the information from mput equations, the necessary
characteristics can be obtained and applied to the
evaluation function and get the evaluation weight.
Moreover, an appropriate algorithm is suggested being
applied to data dependence testing.

As shown in Fig. 5, four test algorithms are chosen in
the Test Algorithm Library (TAL). There are Banerjee test,
GCD test, I test and Power test. The four tests are chosen
to show the exactness and efficiency. The Banerjee test
finds a real solution within limits, the GCD test, on the
contrary, finds an mteger selution ignoring the limits, the
T test is a combination of the Banerjee test and The GCD
test and the Power test 1s a very exact and powerful test,
but expensive cost. The basis of our choice is based on
experiences. Although it may be not the best choice, the
experimental results show that it can satisfy for some
extent. Traditionally, the Banerjee test, the GCD test and
the T test are single dimensional test algorithms, so we
prefer to apply the three tests when data dependence
testing is needed for array references of single dimension
in our approach. The Power test 1s applied when complex
simultaneous equalities or inequalities appear to solve
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data dependences since it can handle complex
simultaneous loop limits, but suffer expensive cost of
execution time.

For examining the test algorithms, there are four major
characteristics which dominate the selection of test

algorithm in the TAT to be described as follows:

Bound: Whether indices bounds of loop are known
or not.

Coeff: Whether the coefficients of variables in
simultaneous equation system are 1, 0, -1, or not.
Dim: Whether the array 15 smgle
dimensional or multidimensional.

Var_num: Whether the number of variables in the
simultaneous equation system is small or large.

reference

Although the four characteristics dommate the
selection of test algorithms, we don’t know what the
dominating degree is for each characteristic. Therefore,
the dommnating degree for each characteristic can be
quantified as Table 1.

For simplicity, two quantities, 4 and 1, are defined as
weights for four characteristics in Table 1. For example,
the weight of Bound s defined to be 4, when a loop
bound 1s known, otherwise, to be 1.

After defining characteristic weight, the best
characteristic weights for each algorithm in the TAT can
be obtammed and the comresponding weights of the four
characteristics for each test algorithm mn the TAL can be
shown in Table 2.

There
characteristic

are two important terms which are
weights and important of
characteristic in our evaluation function of weight. The
weights of characteristic have been defined above and the
important factor of characteristic, based on experience, 1s
defined by each test algorithm. The result of defimition 1s
shown in Table 3.

The important factors of characteristic are bounded
between 1 to 4 based on the number of test algorithms in
the TAL and the number of dominating characteristics of
test algorithm. For example, the Banerjee test 1s dommated
by loop bounds, so the important factor of Bound
characteristic is defined to be the largest one, 4. Tn fact,

factors

the range of important factor in Table 3 can be expanded
as the number of test algorithms is increased m the TAL.

There must be a corresponding reference weight for
every test algorithm to map the result of evaluation
function. The reference weight for each test algorithm can
be formulated as Eq. 5.

Ref W =Imf, * Attr W, +Imf, * Attr W,

+1Imf, * Attr W, +Imf, * Atr W, (5)
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Table 1: Characteristic weight

Bound Dim Coeff’ Var_num
Known Unknown Single Multi 1,0, -1 1,01 <3 >=3

Weight 4 1 4 1 1 4 1
Table 2: Suggestion weights .of characteristic for each test algorithm the test algorithm in the TAL, there is only one chance

Algorithm produced ‘Maybe’ result by one algorithm-the I test,
Attri Banerjee GCD I Power however, it may be more precise than the Banerjee test
Bound 4 1 1 1
Coeft 4 1 1 1 : . : : ot
Dim N 4 4 . Algorithm: (Weighting Characteristic Test)
Var num 4 4 1 1 Input:

1 1 1 1 1 1 1
(@, a8, MLUNG LML N,

Table 3: Important factor of characteristics L

Algorithm

o a% a” e ME N M N,
Attri Banerjee GCD I Power Coeff W, Bound W, Dim_ W, Var_ num_W)
Bound 4 1 2 1 Output:
Coeft 1 2 2 2
Dim 3 3 2 1 . . .
Var num 2 2 1 1 No: The input is not integer solvable
or Yes : The input 1s integer solvable

Table 4: Reference weights of test algorithms or Maybe : The mput may be integer solvable

Algorithm Pass 1:
Weight Banerjee GCD Power Call .EvaluationiFl.mction to draw a conclusion,
Ref w 40 23 13 5 that is, the most suitable dependence test.

The Ref W represents the reference weight after
summing up each product of importance factor and
characteristic weight. The ITmf, and Attr W, represent the
mnportance factor of the ith characteristic and its
corresponding weight, respectively. The necessary
computing data, Imf, and Attr W, in Eq. 5 can be
obtained according to Table 2 and 3. For example, the
reference weight of the Banerjee test can be computed as
4*A4+] *44+3%442*4 = 40. The reference weight of the test
algorithm m library can be summarized in Table 4 by
Applying Eq. 5. Obviously, the reference weight of the
Banerjee test is the largest one, because of its more
constraing to be applied, on the contrary, the reference
weight of the Power is the smallest since it has better
ability of solving problem with less constrain.

Proposed weighting characteristic test algorithm: The
details of the weighting characteristic test can be
summarized as an algorithm, which consists of two passes
as shown in Fig. 6.

For the input parts of the weighting characteristic
test, first, the m linear simultaneous equations which have
n coefficients of a,, a’, ..., a are fed into the test
algorithm. The corresponding limits of coefficients are
lower bound, M and upper bound, N, respectively,
where i is from 1 to m and j is from 1 to n. Secondary, the
weights of the four characteristics, Coeff W, Bound W,
Dim W and Var num W, are also fed mnto the test
algonithm. There are three results, ‘No’, “Yes’, or “Maybe’,

appearing m the output. According to the output result of
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Pass 2:
Call the corresponding testing algorithm in TAL.

Fig. 6: The weighting characteristic test

and the GCD test, where they may produce tentative
‘Yes’, but the T test doesn’t. In Pass 1, the weighting
characteristic test calls Evaluation Function to draw a
conclusion for choosing the most appropriate test in the
TAL. Once the conclusion 18 drawn by
Evaluation Function and a suitable test is applied for
detecting data dependences at Pass 2.

To reduce the computation overhead, the evaluation
function algorithm 1s constructed as low as possible for
time complex. The evaluation fimction algorithm of weight
1s summarized into an algorithm-Evaluation Function as
shown in Fig. 7.

The two-dimension array Imf is declared for storing
the data of Table 3. The one-dimension arrays Total W
and Ref W are declared for storing the evaluation results
and the data of Table 4, respectively. A flag variable 1s
declared for indicating which test algorithm in the TAL
should be applied and flag is initialized by zero. The total
weight of test for each test is computed by evaluation
function during execution phase. The evaluation function
1s formulated as Eq. 6.

Total W =Imf of bound * Bound W
+Imf of coeff™ Coeff W

+Imf of dim * Dim W +Imf of var num
* Var num W

(6)
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Algorithm: (Evaluation Function)
begin{ Evaluation Function}
declare
integer Imf[4,4], Tatol W[4], Ref W[4],
flag;

initial
Imf array by Table 3,
Ref w array by Table 4,
flag by 0;

fori=0to3do
begin
Total w[i] = Imi]1,0] * Bound w +
Tmili,1] * coeft w+
Imff1,2] * Dim_w +
Tmfli,3] * Var num_w;
If Total w[i] > Ref wli]

then
set the 1™ bit of flag
equal to 1

else
set the i™ bit of flag
equal to 0,

endf{for}
switch (flag)
begin

case 15:
call Banerjee;
breal;

case 7 :
call GCD;
breal;

case 3 :
call I,
breal;

case 1 :
call Power;
break;

default :
exception;
breal;

end {switch}

end {Evaluation function}
Fig. 7: The evaluation function

The total weight of each test is evaluated within each
of loop iteration and compares the reference weight with
the total weight of each test to set the corresponding
position in flag. The corresponding bit position of each
test algorithm in flag is as shown in Fig. 8.
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b, |
0 |

b,
0

b, b,
anerjee| GCD 1

b,
Power

b [ B |
Lo | o |

Fig. 8: Corresponding bits for flag

The arranging bit position is according to the
reference weight of each test algorithm. By the decreasing
order of reference weight, the Banerjee test is arranged at
the b, bit position and the Power test arranged at the b
bit position. For example, the content of corresponding
flag, (00000111), 1s equal to 7, that is, the corresponding
bits position of the GCD test, the I test and the Power test
are set to 1, but the Banerjee test is set 0. Obviowsly, a
successor bit of flag 1s also set to 1 when a predecessor
bit is set to 1. Because the corresponding bit of test
algorithm 1s arranged by its reference weight mn the flag,
that 1s, when a test algonithm, bemng the former bit position
of the flag, can be applied and a test algorithm, being the
later bit position of the flag, can be also applied, too.
Finally, a ‘case-switch” structure is used to select an
appropriate test algorithm according to the content of the
corresponding flag.

Example for the weighting characteristic test: To
describe the execution process of the weighting
characteristic test clearly, an example of data dependence
testing, as shown in Fig. 9.

The program segment shows that it 13 a bound
unknown loop and the data dependences exist between S,
and 3, due to the two references to array A. The
subscripts of array A referenced in S, should be equal to
that in S, Therefore, the linear equation is derived as
follows:

=i 4+2= i, =2

As the linear equation of data dependence is
generated from the loop, the weights of characteristics are
set as follows:

Bound W = 1: The loop bounds are unknown.
Coeff W = 4: The coefficients are -17s, 1’s.

Dim W = 4: This is a single dimensional array
references.

Var num W = 4: The number of variables are two,

thus less than three.

After setting the weights of characteristics, the
weighting characteristic test enters the Pass 1 for
execution and the evaluation function is called to draw a
conclusion. The process of the total evaluating weight for
each test algorithm 1s shown as follows:

* Banerjee W=4*1+1%44+3*4+2%*4
=28<40
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Dol=M,N
S, : Al = ...
S, : = A[+2]
EndDO

Fig. 9 An example of program segment for data

dependence

The corresponding bit of the Banerjee test in flag is
set to zero.

GCD W=1*1+2%44+3%44+2%4
=29 28

The corresponding bit of the GCD test in flag is set to

one.
o I W=2%1+2%4+2*4+2%4
=22>13
The corresponding bit of the T test in flag is set to
one.

Power W=1*1+2*4+1%4+1*4
=17=5

The corresponding bit of the power test in flag is set
to one.

Based on the setting of evaluation function, the
content of flag 1s shown in two forms, base 10 and base 2,
shown as:

flag = 00000111, = = flag = 7,

With the result of flag, the evaluation function draws a
conclusion, the GCD test algorithm bemg the most
suitable test to be applied. After Pass 2, the GCD test is
mvoked and the result shows that the array references are
data dependent. Hence, they could not be executed in

parallel fully.
RESULTS AND DISCUSSION

Experimental assumptions: The experiments are
performed on Pentium 4 PC with Microsoft XP O.S. anda
CISC processor of Intel 2-GHz. First, four test algorithms,
the Banerjee test, the GCD test, the T test and the Power
test, are encoded i C programming language. To simplify
the process of constructing experimental environment, a
simple program which reads the input patterns of input
equations and four characteristic weights is constructed
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Dol=11to100
Dol=11to50

A[LI+10] =
.. = A[I-10]]

S
Sy

Enddo
Enddo

Fig. 10: The program segment for data dependence testing

1244411
211100
:-11100
20150
:0150
210
201100
201100
9:11350
10:-1150
11:-10

00 -1 Oy s W

Fig. 11: The input pattern for test algorithms

and 1mplemented for the evaluation methods of the
weighting characteristic test, then draws a conclusion and
the corresponding test 1s nvoked. Array subscripted
references from input case is selected for dependence
testing and encoded into an input file by hand.

For example, as shown in Fig. 10, the program
segment which shows a two-dimension array reference
pair should be tested for true dependences and the
program can be transformed to solve the following
simultaneous equations.

i,-1,=10
wherel<1<100,1<j<50
=-10

j1 Rk

The simultaneous equations can be encoded into the
form of Fig. 11 by applying the methods which had been
proposed by Pugh (1992) and Shen ef al. (1990).

Obviously, this 13 a multidimensional array reference
and the bounds of indices are known. The coefficients of
the simultaneous equations are 1 and -1, respectively and
the number of variables is greater than threes.

To aveid the situation of contriving special case to
demonstrate the power of the approach, mn the first case,
there are 29 array reference pairs chosen from Livermore
Loops (Ben-Asher and Haber, 2001; Mashey, 2005) to
show that our approach is not the best choice for the very
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simple array reference pairs and they can be judged
directly by simple tests. In the second case, there are 91
array reference pairs of loops chosen from LAPACK
(Psarris and Kyriakopoulos, 2001; Cunha et al., 2002,
Kajiyama et al., 2005) which is a physical and great deal of
codes to demonstrate the exactness of our approach.

Execution time and overhead: In order to compare the
execution performance for the proposed method, the
execution time of five tests, the Banerjee test, the GCD
test, the I test, the Power test and the W test are shown in
Table 5 for the array references of Fig. 12.

The entries of the first two rows in Table 5 represent
the execution time of inspecting the array reference on our
machine.

According to the first row data which does not apply
weighting characteristic test (W test) in Table 5, the
Power test spends much more execution time obviously,
80 it is an expensive test algorithm. The second row data
denotes the execution time when the W test applies the
four tests. The entries of the first two rows imply if array
references pairs are simple, then a sumple test, such as the
Banerjee test, the GCD test, or the T test, is chosen to be
applied for a short execution time.

Table 5 shows the introduced overhead caused by
the W test for the four tests, respectively. Although the
overhead of the W test is almost 100% comparing with
simple test, the W test 1s smaller overhead than other
integrated methods (Goff et al., 1991; Shih et al., 1994)
which cause the thousands of times attached overhead
when they are compared with simple test algorithms.

Exactness: Livermore Loops and LAPACK are adopted
for the benchmark programs. Twenty-nine array reference
pairs are chosen from Livermore Loops for data
dependence testing. The experimental results using the
Livermore Loops are as shown in Table 6. Notations, A,
D, I and M denote the number of tiumnes that the test 1s
applied, the test proves the pair is data dependent,
mndependent and the pair maybe has data dependence,
respectively. The array subscripts of the Livermore Loops
are simple and can be solved well by simple tests, such as
the GCD test and the T test, but the Banerjee not. The
applied frequencies of the four tests in the W test are
analyzed as shown in Fig. 13. The W test almost applies
the GCD test and the I test within twenty-mne times of
array references pairs and gives exact result, compared
with the Power test. Although the Power test always
gives the correct result for data dependence testing, the
cost of the Power 1s too expensive. The W test also can
give correct result without applying the Power test any
time, because it evaluates an appropriate test to be
applied with reasonable cost and exactness.
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DolI=1,10
Dol=1,10
S AL T]=..
S5 =A[T, I-1]
Enddo
Enddo

Fig. 12: The input loop patten of experiment for
execution time and overhead

251 ga
a1 2z 22
20{ 0D
E 15-
z
§10-
6 6
5_
Lo, 0 0 000
o-—1—= T r
Banerjee GCD I Power
Name of test

Fig. 13: Applied frequencies of four tests within W test
for livermore loops

Table 5: Execution time (sec) and overhead on PC

Variables Banerjee GCD 1 Power
Without W 1.53x107% 1.56x107*% 1.61x107* 0.921
With W 3.15x107* 3.20x107* 3.23x1074 0.9212
Overhead 105.2% 101.99% 100.00% 0.018%

Ninety-one array references pairs are chosen from the
LAPACK benchmark program for data dependence
testing. The Banerjee can not be applied at all, because
the bounds of array subscripts are unknown since they
are parameters of subroutines (Table 6). The GCD test and
the T test loose their precision since seven incorrect
results are found. Although the Power test always gets
the correct result in a variety of benchmark programs, it is
too expensive for all array reference pairs. The W test
shows high ratio of precision can be achieved and only
one incorrect result, as shown in Table 7, 18 produced.
The applied frequencies of the four tests within the W
test are analyzed as shown in Fig. 14. The GCD test and
the T test also take a major proportion of applied
frequencies within 91 array reference pairs for the W test.
The W test just applies the Power test 7 times and gets
high accuracy.

The W test gets high precision (100 and 98.90%,
respectively) for both benchmark programs. The Banerjee
test, the GCD test, the I test, the Power test and the W
test are compared for the exactness of LAPACK and the
result is as shown in Fig. 15. The exactness of the Power
test 1s the base of normalization, that 1s, the exactnesses
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Table 6: Frequencies of application/independence/dependence/maybe for livermore loops

Ranerjee GCD 1 Power W
A I D M A I D M A I D M A I D M A I D M
1 0 1 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0 29 0
Table 7: Frequencies of Application/Independence/Dependence/Maybe for LAPACK
Banerjee GCD I Power w
A 1 D M A 1 D M A 1 D M A 1 D M A 1 D M
0 0 0 0 91 0 91 0 91 0 91 0 91 7 84 0 91 6 85 0
_ 1.00E+H00
M1oaA 1LODEH0T @ Ratio
oI
601 mp 2 2 9.00E+01-
o 501 8.00E+H)14
8 o T.00EH01-
o 40 .
;g: 5 6.00E+014
304 .
g 26 26 5.005+01-
201 4.00E+011
10 76 3.00E+014
or—000 [ Jold | [o ! 2.00E+01
Banerjee GCD I Power 1.00B+01- 7.00E+H)2
N: £ test 0.00EH)0 1.67E+04 1.75E+04
ame o 0.00B+00 : . I
Banerjee  GCD 1 I W Power

Fig. 14: Applied frequencies of four tests within W test
for LAPACK

og.ons, 100.00%
92,30%  92.30%

Gcb 1 W Power
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100.00%
90.00%
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70.00%

% 60.00%-
50.00%-
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30.00%+
20.00%
10.00%

0.00%

0.00%
Banerjee '

Fig. 15: Exactness of five tests for LAPACK

of the other four tests are normalized to the Power test.
Clearly, the W test has the relatively high ratio of
exactness, approaching to 99%. The other three simple
tests are obviously low, because they are only suitably
used in simple array references.

To demonstrate the efficiency of the W test, the
execution time of the LAPACK 1s illustrated in Fig. 16.
Similarly, the execution time of the Power test is used as
the base of normalization and the other four tests are
normalized to the Power test. Although the execution time
of the W test 1s higher than the other three tests, it is

417

Name of test

Fig. 16: Execution time of five tests for LAPACK

significantly lower than the Power test and it 13 an
acceptable method for parallelizing compilers.

CONCLUSION AND FUTURE WORKS

In this study, we present an integrated approach, a
weighting character method by evaluating the weight of
nput data of loop, for data dependence testing. For
implementing the weighting characteristic test, the
evaluation function is established to generate the total
weight for each of the tests in the TAL. The experimental
results demonstrate that both good efficiency and
precision can be achieved by the weighting characteristic
test.

The proposed method improves overhead evidently
and the experimental results demonstrate the efficiency.
Our approach has proven the precision of two benchmark
programs, Livermore Loops and LAPACK and the
experimental results demonstrate that the precision of
Livermore Loops 100% and the LAPACK
approaching to 99%.

The traditional parallelizing compilers select one kind
of data dependence test for detecting data dependences
of loops within a program. However, the proposed
approach provides the feasibility of test algorithm
selection by the mput data of loops within a program, that

is is
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is, there may be one or more test algorithms being applied
within a program. According to the conclusion of the
evaluation, an appropriate test algorithm can be selected
automatically.
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