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Abstract: This research proposes a novel segmentation technique based on wavelet based active contour
model for detection of mammographic lesions. Mammography 1s the primary imaging technique for the detection
and diagnosis of breast lesions. A new segmentation technique using Wavelet based active contour
segmentation algorithm has been proposed and tested for segmenting the mammogram lesions in this research.
This new techmque incorporates wavelet refinement for better fitting. Experimental studies establish that the
proposed segmentation technique gives better segmentation results m detecting the mammographic lesion in
comparison to few other existing algorithms. This indicates that the proposed technique is a good segmentation

technique.

Key words: Mammogram, active contour modeling, wavelets, image segmentation

INTRODUCTION

Breast cancer 1s one of the sigmficant health
concerns that has started to clain prommence 1 Medical
and Allied Research due to its high prevalence and
detection rates since the last few decades. It has been
reported that One mn eight women m the United States will
develop breast cancer during her lifetme (Wingo ef al,,
1999). Prevention of Breast Cancer is a hitherto unreliable
solution though possible. This necessitates that early
detection is mandatory to reduce or prevent loss of life
due to breast cancer.

Mammography is the primary imaging technique
for the detection and diagnosis of breast lesions.
However, due to various fatigue and human factors, the
miss rate has been high. It has been observed that
radiologists miss about 10% of all cancerous lesions
(Moskowitz, 1995). Also the overall percentage of breast
detected per number of breast biopsies
performed on the basis of mammographic screening
(Tabar et al, 2001) ranges between 10 and 50%
(Sabel and Aichinger, 1996).

Though clinical testing of lesion detection algorithms
15 routinely done, yet there i1s a constant endeavor to
achieve high performance. Also, algorithms in each
category  represent different
methodologies. Hence this research work proposes a
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Novel segmentation technique using wavelet based active
optimization model for
mammographic lesions. Comparison with few other
existing algorithms establishes that active contour model
performs better in detecting mammographic lesions. In
this research, two automatic mammographic lesion
detection algorithms- Fuzzy C-means Clustering, Otsu
thresholding, are compared with our Active Contour
model based algorithm.

This research was done at the Vinayaka Missions
Super Speciality Hospital, Salem, Tamil Nadu, India in
June 2007,

contour detection of

MATERIALS AND METHODS

Global methods: Texture analysis allows us to segment
the image and classify the segmented regions. These
regions can produce parameters for a forthcoming
method. The segmentaton (or region of interest
localization) of the mammograms consists of three parts:
coarse  segmentation and  fine
segmentation. Preprocessing is used to extract the true
breast region from the image using thresholding (Q1i and
Snyder, 1999) and median filtering.

Further algorithms are working only on the extracted
region. The second step (coarse segmentation) calculates
texture (co-occurrence matrix

preprocessing,

various parameters
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(Tivarinen, 1998), gray level mun length gray level
differences and histogram features i a particular window
to create the feature vector.

The feature vector is passed to a set of decision trees
(Otsu, 1979), which will classify the actual image segment
(in which the feature vector is calculated). The decision
trees are automatically generated from a set of training
images. These traiming images contain a mass (or lesion)
and some swrrounding background tissue.

The image is segmented using all the decision trees.
The output 1s a vote board where each 1mage segment can
have a vote value between zero and the number of the
classifying trees. This vote board is post processed to
create a binary mask that will cover regions of interests
(suspected locations of lesions).

Tt is treated as an image and adaptive filtering is
applied to locate the most suspicious regions. The fine
segmentation step uses a multiresolution (Mata et al.,
2000) Markov random field (Li et al., 1995) to improve the
preliminary coarse
segmentation.

segmentation provided by the

Local methods: Anocther segmentation 1s performed on
the patches using a combination of dual binarization
(Li et al., 1995), Bézier histograms (Székely and Pataki,
2003; Q1 and Snyder, 1999) and a modification of the radial
gradient index method (Qi and Snyder, 1999) to obtain a
black-and-white mask.

After getting the mask of the lesion candidate several
parameters are calculated. Some of them refer to the shape
of the object (e.g., moments (Qi and Snyder, 1999), a
special symmetry measure based on PCA (Székely and
Pataki, 2003; Qi and Snyder, 1999), compactness
(Krupinski and Giger, 1998); others refer to the texture of
the object and its surroundings (e.g., average brightness
of the masked area, average brightness of the
background, the quotient of these two numbers and the
average variance of the masked and unmasked regions).

Based on these parameters, it can be decided whether
the patch contains a true lesion or not. Currently human
experts evaluate the parameters, but the development of
an automatic clustering module is in progress.

In this research, two automatic mammographic lesion
detection algorithms-Fuzzy C-means Clustering, Otsu
thresholding, are compared with our Active Contour
model based algorithm.

Fuzzy C-means clustering: Fuzzy C-means Clustering
(FCM), is also known as Fuzzy ISODATA employs fuzzy
partitionmg such that a data point can belong to all
groups with different membership grades between
0 and 1. FCM is an iterative algorithm. The aim of FCM is
to find cluster centers (centroids) that minimize a
dissimilarity function.
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To accommodate the introduction of fuzzy
partitiomng, the membership matrix (U) 1s randomly

initialized according to Eq. 1.

u, =1,%j=1...,n

i=1

(1

The dissimilarity function which 1s used in FCM 1s given
Eq. 2.

(2)

Where:

u; = Between O and 1

c = Centroid of cluster 1

d; = EBuclidian distance between 1, centroid (c,)

and j, data point
m € [1,%0]= Weighting exponent

To reach aminimum of dissimilarity function there are
two conditions. These are given in Eq. 3 and 4.
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By iteratively updating the cluster centers and the
membership grades for each data pomnt, FCM iteratively
moves the cluster centers to the right location within a
data set.

FCM does not ensure that it converges to an optinal
solution. Because of cluster centers (centroids) are
initialize using U that randomly initialized (Eq. 3).

Otsu thresholding: Otsu’s (1979) method chooses the
optimal thresholds by maximizing the between-class
variance with an exhaustive search.

ACTIVE CONTOUR OPTIMIZATION MODEL

Active contours snakes can be used to segment
objects automatically. The basic idea is the evolution of
a curve, or curves subject to constraints from the input
data. The curve should evolve untl its boundary
segments the object of interest.

This framework has been used successfully by
Kass ef al (1988) to extract boundaries and edges. One
potential problem with this approach is that the topology
of the region to be segmented must be known in advance.
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The propagating curve is modeled as a specific level
set of a higher dimensional surface. It 1s common practice
to model this surface as a function of time. So as time
progresses, the surface can change to take on the desired
shape in an optimized manner.

Mathematical formulation of level sets: Tet Q be a
bounded open subset of R’, with dQ as its boundary.
Then a two dimensional image 1, can be defined as u;:
€ - R. In this case { is just a fixed rectangular grid. Now
consider the evolving curve C in , as the boundary of an
open subset w of Q. In other words w= C and C is the
boundary of w (C = dw).

The main idea is to embed this propagating curve as
the zero level set of a higher dimensional function ¢. We
define the function as follows:

dx,y,t=0)==2d

where, d 1s the distance from (x,y) to dw at t = 0 and the
plus (minus) sign is chosen if the point (x,y) is outside
(inside) the subset w.

Now, the goal 13 to produce an equation for the
evolution of the curve. Evolving the curve in the direction
of its normal amounts to solving the partial differential
equation (Osher and Sethian, 1988):

2| Vol.aix,.0) = 0,(x.¥)

where, the {(x,y), b, (x,y) = 0} defines the initial contour
and F 1s the speed of propagation. For certain forms of the
speed function F, this reduces to a standard Hamilton-
Jacobi equation. There are several major advantages to
this formulation. The first is that ¢ (x,y,t) always remains
a function as long as F is smooth. As the surface ¢
evolves, the curve C may break, merge and change
topology.

Another advantage is that geometric properties of
the curve are easily determined from a particular level set
of the surface ¢. For example, the normal vector for any
point on the curve C is given by:

n=vo

and the curvature K 13 obtained from the divergence of
the gradient of the unit normal vector to the front:

_ b =200, + 001
(tti T )312

K= div(%

)

2
¥

Finally, another advantage 1s that we are able to evolve
curves in dimensions higher than two. The above
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formulae can be easily extended to deal with higher
dimensions. This is useful in propagating a curve to
segment volume data.

Active contours without edges: Recall that the curve C
can be viewed as the boundary of an open subset w of £2
(1.e., C = dw). Denote the region w by mnside (C) and the
region Qiw by outside (C). Now rather than basing the
model on an edge-stopping function, we will halt the
evolution of the cwve with a energy minimization
approach.

Consider a sunple case where the image u, 1s formed
by two regions of piecewise constant intensity. Denote
the intensity values by u,, and u,,. Furthermore, assume
that the object to be detected has a region whose
boundary is C, and ntensity uy,. Then inside (C,), the
intensity of v, is approximately v, ,, whereas outside (C,)
the intensity of u, 1s approximately uy,. Then consider the
fitting term:

FO+E@= [ luxy)-¢[ dxdy

inside(s)

+ I lu,(x,v)—c, |* dxdy

outaide(c)

where, C i1s a curve and the constants ¢, ¢, are the
averages of u; inside and outside of C, respectively.
Congider Fig. 1, if the curve C is outside the object, then
F.(C) >0, F,(C) = 0. If the curve is inside the object, then
F(C) = 0,F,(C) = 0. If the curve 1s both inside and outside
the object, then F,(C) > 0, F,(C) > 0.

However, if the curve C 13 exactly on our object
boundary Cy, then F(C) = 0, Fi(C) = 0 and our fitting term
is minimized.

We also consider adding some regularization terms
as in the Mumford-Shah segmentation model (Mumford
and Shah, 1989). Therefore we will also try to mimmize the
length of the curve and the area of the region inside the
curve. So we introduce the energy function E:

E(C,¢,,c,) = pn.Length{c) + v. Area(inside(c))
[ lugyr—g [ dxdy
insied(c)
[ gty o P dxdy

oulside(c)
where, p=0, v=0, &, > 0, A, >0 are fixed parameters. So our

goal is to find C, ¢,; ¢, such that E(C, ¢, ¢,) is minimized.
Mathematically, we want to solve:

iuu =1,%j=1...,n
i=1

This problem can be formulated using level sets as
follows. The evolving curve C can be represented by the
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Fig. 1: Al possible cases inposition of the ourwve

zero level set of the signed distance fanction ¢ asin (1)
S0 we replace the wiknown wariable © by §. Now
consider the Heaviside function H and the Dirac measure
&

1 if=z20

d
0ifzer O g HE

H(z) =[

We can rewrite the length of ¢ = 0 and the area of the
region insde(d = ) vangthese functions. The Heaviside
functicn is positive inside ow curve and zero elsewhere,
so the area of the region is just the irdegral of the
Heaviside function of ¢ The gradient of the Heaviside
function defines our curve, so integrating over thisregion
givesthe length of the owrve.

Mathematically:

Ara( =0 = [H(p(x ydedy
Lengthip =0) =_r| WHC, 700 deedyr
= _[f’('i(x,fl)l Vit(x, ¥) lxdy

Sinilatly, we canrewrite the previous enet gy equations
so that they are defined over the entire domain rather
than separated into inside (Ch=d¢ >0 and outside
(=<0
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[ gtz iy -, Fdaoty = [1u,Ceyd -, H@ox ydndy
0 o
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Therefore
written as:

o energy function E(C, ¢, ) can he
HC, e.e,)= u-_[éflt(x,:rilll Ve, ¥) Waedy
+‘-'_[H(¢|:H,FDC]H'1F

+h Jl gl y)—c, [ Hipls, wiided

+iy [luaCe, ¥ =y | (1= HOfCx, 70 dndy

The constants oy, o, are the averages of 1w in g = 0 and
¢ = 0, respectively
So they ate easily compded as:
[1ng ez, L, ¥y My

S it ety

atid

[aalze, 700 — H{h(z, w0 ey
o, () =2
[O-H(Ge, 3 dedy

Now we can deduce the Euler-T agrange partial differertial
equation. We parameterize the descent direction byt = 0,
so the equation ¢ (x, ¥, ) is

M _ 'ﬂ——u—c1 u —c, =
St e et 40

Inorder to solwe this partisl differential equati on, we first
need to regularize H(=) and & ().

1

S| 2

implying that &z) reglarizes to:

H‘(zj-%+

1
BE) - —.
=) TS

Itis easy to see that as e ~ 0, H (Z) cotrverges to HiZ) and
6,(z) cotrverges to O(z). The authors merdion that with
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these regularizations, the algorithm has the tendency to
compute a global mimimizer.
After discretization and linearization, it becomes:

+¢n+l

GV (@ — 00 )
\/ / Ah)
Ay¢n+l

J(A%,,)/ (§0,; = 87 /h)

v MylUg, — € OM 4 2 (g - €4 ]

¢'n+1 ¢

TR (0] J)

where the forward differences of ¢, are calculated. Tlus
linear system also depends on the forward differences of
¢;;*", which is an unknown.

However these can be solved using the Jacobi
method. Tn practice, the number of iterations until
convergence was found to be small indicative of better
optimization efficacy.

Active contour modeling with wavelets: The i1dea of the
scale-space continuation method (Leymarie and Levine,
1993) 1s to calculate the snake in a coarsely smoothed
umage; then the result at the coarse scale 1s used as an
mnitial contour on a finer image and so on, until the native
umage resolution 1s reached.

The original image is filtered through a family of
Gaussian filters with different resolutions. Then, a
differentiating filter, such as the Sobel filter, is applied
these images produce
approximations of the gradients of the Gaussian smoothed
image.

to Gaussian filtered to

The following defimtion of external energy together
with the continuation method in the wavelet domain
represents a generalized version of the gradient-based
scale-space continuation method.

It has been shown that fast implementation of can
be achieved when s 1s an integer power of 2 by
filtering alternatively through a low-pass filter (I.) and a
highpass filter (H). Then, the external energy at scale s is
defined as the negative of the modulus of wavelet
transform at scale s

B (030 = B (t3) = — WG] +

We employ this wavelet-based snake model in our
experiments on mammogram images. The flow chart of
utilized model is shown in Fig. 2.
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Fig. 2: Flow chart of the wavelet-based active contour
optimization model

Proposed segmentation algorithm: The proposed Energy
Minimization Algorithm with Jacobi Method is given as:

Initialize ¢ by ¢, n =0

for fixed number of iterations do
Compute c,(d") and c,{p™)
Estimate forward differences of ¢*'' using JTacobi
method
Compute ¢

1

End

Using the energy minimization approach, we achieve the
desired segmentation in digital mammogram images.

RESULTS AND DISCUSSION

Images from the MIAS (Mammographic Image
Analysis Society) database with lesions has been tested.
To indicate the effectiveness of the proposed method, we
present a sample image and segmentation results using
the proposed method and two other methods namely
FCM clustering and Otsu thresholding.

Figure 3a shows a sample mammogram image,
Fig. 3b-d shows the detected clusters using FCM
clustering, Otsu thresholding and Active contour
models, respectively.

Table 1 shows that the error due to segmentation of
the region of mterest 1s less with proposed method
whereas it reaches its maximum value of 11.91 for Otsu
thresholding method.

Visual observation indicates the detection performed
by active contour model points more accurately towards
the lesion compared with the segmentation results of
FCM and Otsu methods. Segmentation error tabulation
also supports active contour based segmentation due to
the very low segmentation error compared with the other
two methods.
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Table 1: The segmentation error of these methods

Error (%)
No. of pixels
in the image Fig. 3b Fig 3c Fig. 3d
4096 7.81 11.91 151
@ Originll () FCM (0 Otsu @ ACM

Fig. 3: (a) indicates a sample mammogram image, (b) the
detected clusters using FCM clustering, (c) Otsu
thresholding and (d) Active Contour Model
(ACM)

This research has proposed a novel segmentation
technique for detection of mammographic lesions using
wavelet based active contour optimization model. Testing
of the proposed method vields promising results
compared to two other methods. Hence, this research
work establishes that the proposed methodology gives
better segmentation results in mammographic images
compared to the other two conventional methods, thereby
enabling better detection of mammographic lesions.
Therefore this method can be used for detection of
lesions in digital mammograms.

CONCLUSION

This research has proposed a novel segmentation
technique for detection of mammographic lesions using
wavelet based active contour optimization model. Testing
of the proposed method vields promising results
compared to two other methods. Hence, this research
work concludes that the proposed methodology gives
better segmentation results in mammographic images,
thereby enabling better detection of mammographic
lesions.

Future work in the same area will concentrate on
developing a new methodology that can be applied to
both masses and microcalcifications.
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