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Abstract: A novel Ensemble Intrusion Detection System 1s proposed in this study. In this system, Principle
Component Analysis (PCA) and Independent Component Analysis (ICA) feature extraction approaches are
used to construct two Support Vector Machine (SVM) classifiers. Then the results are combined to pursue
higher performance. Because the costs of false positive error and false negative error are asymmetric in IDS,
we ntroduce Pareto-Optimal Approach to obtan the optimal weight for the ensemble system. Experiments on
the data set KDD Cup 1999 Data show that the proposed system outperforms standard SVM, PCA SVM and

ICA SVM.
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INTRODUCTION

Intrusion Detection Systems (IDS) 1s to recognize
and notify the users” various security events, eg.,
incidents and anomalies, which can be observed from
users’ behaviors. The challenge for an IDS is how to
discover a users or programs behavior from large audit
data. Machine learming approaches were successfully
applied to intrusion detection due to their learning
abilities. These approaches including but not limited to
Artificial Neural Network (ANN) (Verwoerd and Hunt
2002; Joo et al, 2003, Zhang et al, 2003), Artificial
TImmune (Aickelin et al., 2004; Harmer et ad., 2002), Markov
Model (Ye et al., 2001, Du et af., 2004), Support Vector
Machines (Mulkkamala and Sung, 2003; Chen et al, 2005),
are being used to build IDS.

In recent years, Support Vector Machine (SVM) is
gaining much popularity as one of those effective
methods for machine learming (Scholkopf et al., 1997). It
has been found that SVMs perform better than neural
networks for intrusion classifications (Sung and
Mukkamala, 2004). Moreover, SVM is more suitable for
mtrusion detection, for it is faster while tramng
(Mukkamala and Sung, 2003), independent of data
dimension and can learn incrementally (Ralaivola and
D'Alche-Buc, 2001).

Whereas, in the former studies (Gu et al., 2005), we
found that false negative error 1s very high i mtrusion
detection by standard SVM algorithm. False negative
error is incurred when the TD'S does not function properly
or mistakenly ignores an attack (Joo et af., 2003
Theagwara ef al., 2004). The cost of false negative error 1s

higher than that of false positive error, which means TDS
misinterprets normal packets or activities as attacks,
because 1t reflects the possibility that the system 1s
threatened (Joo et af., 2003; Theagwara et al., 2004).

An intrusion detection ensemble system is presented
in this study, which investigated two feature extract
techniques, Principal Component Analysis (PCA) and
Independent Component Analysis (ICA) and SVM for
classification. We discovered that PCA feature extraction
had a low false positive error and a high false negative
error and ICA feature extraction was opposite. Whereas,
to combine these two costs into a single scalar objective
function, we need incorporating a priori information into
the aggregation method, which 1s a difficult task.
Therefore, the multi-object optimization technology is
adopted to obtain Pareto-front solutions. The final
solution set is presented to user for estimation.

PCA-ICA ENSEMBLED IDS

For an intrusion system, when false negative error
occurs, this means that the attack will succeed and the
target resource will be damaged. In present experiment,
standard SVM has a lugh false negative error, which 1s a
big threat to the security of the system. The reason might
be the complicated relativity among the features. Feature
extraction 1s an unsupervised approach that aims to
search the proper features in data. So the features
extracted are likely to better reflect the essential
characteristics of intrusion.

In this study, we have mvestigated the mtrusion
detection algorithm based on PCA and ICA for feature
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Fig. 1: Structure model of intrusion detection ensemble system

extraction, respectively. PCA is a multivariate statistics
method and its basic idea is to seek a projection that best
represents the data m a least-squares sense. Independent
Component Analysis is also a linear transform
technology. While Principal Component Analysis seeks
directions in feature space that represent the data in a
sum-squared error sense, Independent Component
Analysis  instead seeks directions that are most
independent from each other.

The framework of the system is shown in Fig. 1. This
system is composed of four parts: (1) Event producer; (2)
Event analyzer; (3) Event response unit; (4) Event library.
The mechanism of this ensemble classification system is
as follow: each detecting Agent of event producer
collects and unifies audit data and then submits the data
to event analyzer. Principal component analysis and
independent component analysis extract the data
separately. VM 1s used to classify the data extracted, viz.
(Here, it means constructing an optimal hyperplane in two
different spaces.) The optimal hyperplane thus can be
constructed in the corresponding principle component
space and independent component space, by using
SVM. Then, event analyzer combined the outputs from
two mdividual classifiers (PCA SVM and ICA SVM) to
judge whether the event is an intrusion. If event analyzer
verdicts that the event is suspect, the event response will
adopt corresponding step or sunply record it in log file.
Event library is used to preserve support vector sets of
PCA SVM and ICA SVM, the weight of the ensemble
system and the rules learned from mtrusion events, etc.

The learning method of combined classifiers in the
system is called Ensemble. Tt was shown in many domains
that an ensemble 1s often more accurate than any of the
single classifiers in the ensemble (Brown et al., 2005).

ENSEMBLE WEIGHT OPTIMIZATION

In an Intrusion Detection System, the cost of false
negative error 18 higher than of false positive error.
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However, with high false positive error, large amount of
normal networks being regarded as intrusion by TDS will
bring much trouble to the admmistrators. That 15 to say,
the key point of IDS is how to make both false negative
error and false positive error as low as possible. After
investigating FP, FN of PCA SVM and ICA SVM, we can
see: When PCA SVM classifier worles, the system has low
false positive error; while TCA SVM classifier works and
the system has low false negative error. It showed that the
errors of PCA SVM and ICA SVM distributed in the
different position of error space. If we combine them, the
ensemble might be an effective way to detect mtrusion.
The optimization problem is:

(1

min
FP error

) {FNﬁerror
1

In present intrusion detection ensemble system, the
output of event analyzer is obtained by weighted average
of the output of PCA SVM and ICA SVM in order to
optimize the upper formula.

y = sen(cf¥c® + aPe®) (2)

0¥ (k =1, 2) are, respectively the weights of the two
individual classifiers:

& =0

T =1

(3)
c® (k = 1, 2) are, respectively the output of PCA SVM
classifier and ICA SVM classifier:

I 1),k 3 X k3
o :Zaf )yf )K(Xf )=X§ ))+b( )

where, K() is kernel function.
Traditional methods to solve (1) attempt to combine
these two costs (false negative error and false positive
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error) into a single scalar objective function (Pietraszek,
2004 Joo et al., 2003) and then find the optimal solution.
A drawback to this approach 1s that we need
mcorporating a prior information mto the aggregation
method (Abbass, 2003). To choose a optimal tradeoff is
difficult, for instance, in Pietraszek (2004), the authors
selected an individual classifier that gives a good tradeoff
between false positives and false negatives for cost ratio
ICR = 50, while the ratio 5 is considered to be proper
(Joo et al., 2003).

In this study, the two objective functions (false
negative error and false positive error) are optimized
simultaneously. Usually, the minimization of a certain
objective (e.g., FP_error) implies degradation in another
objective (FN_error). Since our aim 1s at minimizing two
criteria during the search, it will produce a set of
classifiers which is the tradeoff between the criteria.
Therefore, we need to find the Pareto-optimal set in our
problem. A solution ze£) dominates a solution 7' and we
write z<Zz 1if and only if Jkef{l,.. K}: f, (2)<f, () and
Ak e41,..., K}: £, (z)>f, (2). The elements of the set
{z|Az €. z'<z} are called Pareto-optimal.

In our experiments, the niched Pareto multiobjective
genetic algorithm (NP-GA) (Kupinski and Anastasio,
1999) is used to maintain stable subpopulations of good
solution. With NP-GA’s, a niche method is used to
maintain stable subpopulations of good solution. An
objective vector 18 optimized instead of a scalar fitness
function in GA. Before the selection is performed, the
population is ranked based on the concept of dominance,
mncorporates the multiobjective nature of the problem into
the selection mechanism. When two or more solutions in
a tournament have the same rank, the winner of a tied
tournament 1s the solution that has the smallest niche
count. The niche count estimates the density of solutions
n a localized region (niche) around an mdividual

The complete algorithm of the evolution of the
intrusion detection ensemble system can be described
below:

Algorithm:
Input: The training set (x, ¥), 1 =1, ..., I collected and
packed by detecting Agent:

Step 1: Project the training data to the corresponding
feature space x°.¥") by PCA and ICA and the
process 1is

Step 1.1: Principle component analysis

Calculate the ith principal component adopting the
following formula

e, = arg max E{(e"x)’}

llell=1
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Step 1.2: Independent component analysis
ICA can be regarded as maximizing this function:

Jow) =[E{GW/ %)} - E{GWV)}T,1=12,p
where, function G 1s usually

G(u)= allog(cosalu), l<a <2, or Gy{u)= —exp{-u’/2),
1

1s a standard Gauss random variable.

Step 2: Using SVM, separately search optimized
classification hyperplane in the feature spaces of
PCA and ICA.

. 1 2 !
min (1w +C38 ),

st. yfk’ ((W,@(xf“)) - b) z1-§,
£20, Q=1

Tt turns to be a quadratic optimization problem as
follows.

i 1 i i
_ 9GO (8 (0
max W(a)fi;:a]—ziz:l:;a]aﬁyg YER(x®, %)
st > y®a® =0,

0ga® < i=1---1
Step 3: Find a set of Pareto optimal weights of
ensemble system via NP-GA.

NP-GA divides each generation into several classes
and selects some individuals with high fitness from each
class to represent this class. Then generates a new group
by crossover and mutation and selection by using sharing
function.

The niche count m; for the ith solution is given by

m =73 s(d,)

jiPop

where, d; is the distance between solutions 1 and j. s{d;)
is the so-called sharing function given by

1- d. <o
S(du) _ i share

di] = Cae
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Here, 0, is called the niche radius, which represents
the maximum distance between solutions that will result in
an increase in their niche counts.

Step 4: Output. Output the Pareto sets of the
optimized weights i the ensemble system and store
the information of support vector sets of PCA SVM
and ICA SVM in Event library.

RESULTS AND DISCUSSION

The data set used in the experiments 13 KDD Cup
1999 Data (Blake and Merz, 1998), which is used as the
experimental data set with many kinds of network
intrusions simulated. The raw data includes a wide variety
of mtrusions simulated in the network. A connection 1s a
sequence of TCP packets starting and ending at some
well-defined times, between which data row to and from a
source TP address to a target TP address under some well
defined protocol. Each connection 1s labeled as either
normal, or as an attack, with exactly one specific attack
type.

Because SVMs are only suitable for binary
classifications, we partition the data mto two classes of
Normal and Attack (Probe, DoS, U2R, R2L) patterns,
where the attack 1s the collection of the four classes of
attacks instances in the data set. The (training and
testing) data set contains 25 000 randomly generated
points, 10 000 of which are training samples and 15,000 are
testing samples. Because these data sets are randomly
selected from KDD data set, the testing set contains 4
mntrusion attacks that have not appeared n training set.
We hope the system also performs well on these new
intrusion behaviors.

Training 1s done using the Radial Bias Function
(RBF) kernel option; an important point of the kemnel
function is that it defines the feature space in which the
training set examples will be classified. In our former
studies (Gu et al., 2005), we have also found that Gauss
kernel 1s better than polynomial kemel, based on the
comparison between the performances of Gauss function
and polynomial function in ntrusion detection.

Because of the former researching (Gu et ., 2003),
we extract 9 dimensions i PCA and ICA feature
extraction. The parameter of NP-GA is set as following:
population size = 20, number of generations = 200,
probability of crossover = 0.8, probability of mutation
= 0.1 and niche distance (o,,,.) = [0.25, 0.45].

We firstly discuss how the system performance is
affected by the weights of PCA SVM and ICA SVM.

Figure 2 presents the variety of false negative error

and false positive error with different weights. From the
Fig. 2 it can seen thatif w¥ =0, viz. 0" =1, PCA SVM
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Fig. 2: Effect of weight on system performance

works. The system has a lower false positive error rate
(= 1.44%,), false negative error rate is 2.71%. With the
increasing of W, false negative error rate of the system is
decreased and has decreased dramatically near 0.503 and
0.641. In most of the cases, (0zw®<0.65), false negative
error and false positive error change oppositely, that is,
when one of them decreases, another one increases,
which shows that it 1s very difficult to choose one single
optimal weight, so we must make a tradeoff between thus
two criterion. While «%>0.65, false negative errcr
basically keeps constant, while false positive error
ascends. When w'® = 1(ICA SVM ocperates), false positive
error reaches 1ts tiptop, 13.14%.

Then, we have investigated the performance of
system and SVM. Table 1 the
classification performance of the classifier based on
standard SVM, PCA feature extraction (PCA SVM), ICA
feature extraction (ICA SVM) and the individual classifiers
with the lighest accuracy and with the lowest false
negative error in Pareto-optimal set which 15 gamed by
using the niched Pareto multiobjective genetic algorithm
(NP-GA).

We can see from Table 1 the accuracy of individual
a i Pareto-optimal set 1s the highest, which 1s close to
PCA SVM and the accuracy of standard SVM is less than
it. Individual b in Pareto-optimal set has the false negative
error which 1s the same as in ICA SVM, moreover, its
accuracy is much higher than TCA SVM, reaching 94.39%.
Although SVM has a high accuracy, its false negative
error is the highest, reaching 4.04%, 15 times higher than
the individual classifier with the lowest false negative

ensemble shows

error in Pareto-optimal set.
To the system’s performance
intuitively, we propose a popular measurement, an ROC

express more
graph, which plots Accuracy agamst false negative rate.
Compared to other measurements, ROC curves provide a
visual tool for examimng the tradeoff between the ability
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Table 1: Detail results of SVM and ensemble svstem

Accuracy False negative False positive
Classifier (%) error (%) error (%)
SVM 95.56 4.04 1.34
PCA SVM 96.54 2.71 1.44
ICASVM 87.14 0.25 13.14
Pareto-optimal* 96.56 2.71 141
Pareto-optimal® 94.39 0.27 6.04

“The individual classifier with the highest accuracy in Pareto-optimal set,
*The individual classifier with the lowest false negative error in Pareto-
optimnal set

of a classifier to correctly identify positive cases and the
number of negative cases that are incorrectly classified.
Figure 3 presents the ROC curve of the ensemble system,
Pareto-optimal set and ROC point of SVM. Point (0, 1) in
the figure corresponds to perfect classification.

We can see from the figure that the accuracy of most
individuals in Pareto-optimal set selected by NP-GA is
higher than or sumilar to the accuracy of SVM and its false
negative error is lower than SVM™ s. At the left side of
ROC figure, the mndividuals of Pareto-optimal set have
lower accuracy than SVM and the false negative errors are
10 times lower than SVM. Therefore, our approach is more
effective for ntrusion detection.

The Pareto optimal solutions gained will be submitted
to users, who will choose a security strategy based on the
current performance of the system. For example, high
accuracy strategy can be adopted in peacetime, whereas
strategy with a low false negative error is adopted when
there is threaten. Therefore, the system can have better
protection.

CONCLUSIONS

In this study, after having investigated feature
extracting of PCA and ICA, we found that classifier based
on PCA feature extraction has a higher accuracy, while it
also has a higher false negative error ; on the other side,
the classifier based on ICA feature extraction has a very
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low false negative error and low accuracy. The reason
might be that TCA pays
independence of features while PCA cares the features
that can mostly represent the original data.

We combined two feature extracting methods
utilizing the idea of ensemble learning, to construct an TDS
ensemble system. In the first place, TDS ensemble system
adopts support vector machine as classification algorithm,
which utilizes quadratic optimization technique to
construct an optimal classification hyperplane between
two classes and ensures high accuracy of IDS. In the
second place, PCA and ICA separately reduce false
negative error and false positive error, demonstrating the
diversity between individual classifiers.

Because the costs of false positive error
false negative error 1s asymmetric in IDS, we introduced
multi-object optimization when seeking the optimal
weight, not to find a single optimal solution but a Pareto-
optimal set that is sent to users for making final decision.
The experiment indicates that this system is very
effective, especially for the lower false negative error
compared to SVM, which is very important in an intrusion
systermn.

For the data sets with asymmetric losses, such as
intrusion detection, cancer detection, ete, it 1s a significant
problem to find the optimal decision with the lowest cost.
For intrusion detection, we utilized two feature detection
approaches and multi-objective optimization to solve this
problem. In the future work, we intend to bring this
technique into cancer detection.

more attention on the

and
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